What is it about?

The aim of the paper is to develop a computational scheme for the numerical solution of the fractional differential equation. The paper proposes a generalised method of Bubnov-Galerkin and Ritz for finding an approximate solution of fractional differential equations.

Featured Image

Why is it important?

The relevance of the work is that fractional differential equations have applications in various fields of science and technology. Many phenomena in fluid mechanics, viscoelasticity, chemistry, physics, finance and other sciences can be described by models using mathematical tools from the theory of fractional calculus.

Perspectives

В последнее время в научной литературе появляются работы, в которых предложены численные методы для некоторых классов уравнений. Однако, несмотря на достигнутый успех в этом направлении, остается открытым вопрос теоретического обоснования применения приближенных методов для более общего класса подобных задач.

Tulkin Mamatov
Bukhara Engineering Technological Institute

Read the Original

This page is a summary of: Finite-element method for decisions the fractional differential equation, January 2024, American Institute of Physics,
DOI: 10.1063/5.0242238.
You can read the full text:

Read

Contributors

The following have contributed to this page