What is it about?
A mixture of an illitic clay and waste glass was prepared and studied during the sintering process. The illitic clay, from the Liepa deposit (Latvia), and green glass waste (GW) were disintegrated to obtain a homogeneous mixture. The addition of disintegrated GW (5–15 wt% in the mixture) led to a reduction in the intensive sintering temperature, from 900 to 860 °C, due to a significant decrease in the glass viscosity. The addition of GW slightly decreased the intensities of the endo- and exothermic reactions in the temperature range from 20 to 1000 °C due to the reduced concentration of clay minerals. GW reduced the plasticity of the clay and reduced the risk of structural breakage. The increase in sintering temperature from 700 to 1000 °C decreased the apparent porosity and water uptake capacity of the ceramics from 35% and 22%, down to 24% and 13%, respectively. The apparent porosities of all the sintered mixtures showed a decrease of between 6% to 9% after the addition of GW with concentrations from 5 up to 15 wt% respectively, while the water uptake capacities decreased from between 4% and 10%. The addition of GW led to an increase in the apparent density of the ceramic materials, up to 2.2 g/cm3. Furthermore, the compressive strength increased by more than two times, reaching a highest value of 240 MPa after the sintering of the 15 wt% GW-containing mixture at 1000 °C.
Featured Image
Why is it important?
The addition of the disintegrated glass to the clay reduced the beginning of the clay sintering temperature from 900 °C to 860 °C due to the melting of the glass. The glass addition slightly decreased the typical clay endo- and exothermic DTA peak intensities in the temperature range from 20 °C up to 1000 °C due to the reduced concentration of clay minerals in the mixtures. Waste glass reduced the plasticity of the clay and reduced the risk of structural failure. By incorporating packaging glass waste into traditional ceramic products, not only economical but also environmental benefits can be gained. The use of waste materials decreased the production cost. In the present paper, it was proved that the addition of packaging waste glass brought about several benefits. First, compressive strength was increased. Secondly, water uptake was decreased. Thus, the incorporation of up to 15 wt% of glass waste to illitic clay products was proved to be beneficial from economic, environmental, and practical sides.
Read the Original
This page is a summary of: Influence of Glass Additions on Illitic Clay Ceramics, Materials, January 2020, MDPI AG,
DOI: 10.3390/ma13030596.
You can read the full text:
Resources
Contributors
The following have contributed to this page