What is it about?

SIRT1, a class III histone deacetylase, acts as a negative regulator for many transcription factors, and plays protective roles in inflammation and atherosclerosis. Transcription factor nuclear factor of activated T cells (NFAT) has been previously shown to play pro-inflammatory roles in endothelial cells. Inhibition of NFAT signaling may be an attractive target to regulate inflammation in atherosclerosis. However, whether NFAT transcriptional activity is suppressed by SIRT1 remains unknown. In this study, we found that SIRT1 suppressed NFAT-mediated transcriptional activity. SIRT1 interacted with NFAT, and the NHR and RHR domains of NFAT mediated the interaction with SIRT1. Moreover, we found that SIRT1 primarily deacetylated NFATc3. Adenoviral over-expression of SIRT1 suppressed PMA and calcium ionophore Ionomycin (PMA/Io)-induced COX-2 expression in human umbilical vein endothelial cells (HUVECs), while SIRT1 RNAi reversed the effects in HUVECs. Moreover, inhibition of COX-2 expression by SIRT1 in PMA/Io-treated HUVECs was largely abrogated by inhibiting NFAT activation. Furthermore, SIRT1 inhibited NFAT-induced COX-2 promoter activity, and reduced NFAT binding to the COX-2 promoter in PMA/Io-treated HUVECs. These results suggest that suppression of NFAT transcriptional activity is involved in SIRT1-mediated inhibition of COX-2 expression induced by PMA/Io, and that the negative regulatory mechanisms of NFAT by SIRT1 may contribute to its anti-inflammatory effects in atherosclerosis.

Featured Image

Why is it important?

The results of the present study revealed a key role of the class III HDAC SIRT1 in the regulation of transcriptional activity of NFAT. We found that SIRT1 suppressed NFAT transcriptional activity, and interacted with NFAT. Moreover, SIRT1 primarily deacetylated NFATc3. Inhibition of COX-2 expression by SIRT1 in PMA/Io-treated HUVECs was largely abrogated by inhibiting NFAT activation. Furthermore, SIRT1 inhibited NFAT induced COX-2 promoter activity, and reduced NFAT binding to the COX-2 promoter in PMA/Io-treated HUVECs. The suppressive effect of SIRT1 on COX-2 expression was mediated at least in part by regulating the transcription factor NFAT. These findings indicate that the negative regulating mechanisms of NFAT by SIRT1 may contribute to its anti-inflammatory effect in atherosclerosis.

Read the Original

This page is a summary of: The Involvement of NFAT Transcriptional Activity Suppression in SIRT1-Mediated Inhibition of COX-2 Expression Induced by PMA/Ionomycin, PLoS ONE, May 2014, PLOS,
DOI: 10.1371/journal.pone.0097999.
You can read the full text:

Read
Open access logo

Contributors

The following have contributed to this page