What is it about?

Thermally-processed coconut water often develop a commercially-undesirable pink color, thus, NMR, UPLC-HRMS, GC-MS analyses combined with chemometrics approach were applied to evaluate chemical variations in comparison to tender water (control) that could explain such color change. Chemometrics on negative ionization mode dataset showed trimeric and A-type dimeric procyanidins, and caffeoylshikimic acid as main identified secondary metabolites induced by processing, while, control water presented mainly cytokinin trans-zeatin riboside, procyanidin dimer, caffeoylshikimic acid and trihydroxy-octadecenoic acid. Processing increased long-chain saturated palmitic and stearic fatty acids contents, meanwhile NMR analysis showed a decline in primary metabolites content as sugars fructose and glucose, and short-chain organic acids. Among the results observed for thermally processed coconut water, the increase in oligomeric procyanidins as A-type dimer and trimer may be associated with pink color development as these are precursors of anthocyanin pigment and/or by enhancing color stability of anthocyanin solutions.

Featured Image

Read the Original

This page is a summary of: Chemical composition of thermally processed coconut water evaluated by GC-MS, UPLC-HRMS, and NMR, Food Chemistry, April 2020, Elsevier,
DOI: 10.1016/j.foodchem.2020.126874.
You can read the full text:

Read

Contributors

The following have contributed to this page