What is it about?
The five fundamental axioms of classical probability theory were put forward in 1933 by Andrey Nikolaevich Kolmogorov. Encompassing new imaginary dimensions with the experiment real dimensions will make the work in the complex probability set C totally predictable and with a probability permanently equal to one. This is the original idea in my complex probability paradigm. Therefore, this will make the event in C = R + M absolutely deterministic by adding to the real set of probabilities R the contributions of the imaginary set of probabilities M. It is of great importance that stochastic systems become totally predictable since we will be perfectly knowledgeable to foretell the outcome of all random events that occur in nature. Consequently, by calculating the parameters of the new prognostic model, we will be able to determine the chaotic factor, the magnitude of the chaotic factor, the degree of our knowledge, the real and imaginary and complex probabilities in the probability sets R and M and C and which are all subject to chaos and random effects. Accordingly, my purpose here is to link my complex probability paradigm to logic. Hence, after adding the time dimension, we will apply this novel paradigm to a newly defined logic that I called ‘Dynamic Logic’.
Featured Image
Why is it important?
Computing probabilities is the main work of classical probability theory. Adding new dimensions to the stochastic experiments will lead to a deterministic expression of probability theory. This is the original idea at the foundations of this work. Actually, the theory of probability is a nondeterministic system in its essence; that means that the events outcomes are due to chance and randomness. The addition of novel imaginary dimensions to the chaotic experiment occurring in the real set R will yield a deterministic experiment and hence a stochastic event will have a certain result in the complex probability set C. If the random event becomes completely predictable then we will be fully knowledgeable to predict the outcome of stochastic experiments that arise in the real world in all stochastic processes. Consequently, the work that has been accomplished here was to extend the real probabilities set R to the deterministic complex probabilities set C = R + M by including the contributions of the set M which is the imaginary set of probabilities. Therefore, since this extension was found to be successful, then a novel paradigm of stochastic sciences and prognostic was laid down in which all stochastic phenomena in R was expressed deterministically in C. I called this original model ‘The Complex Probability Paradigm’ that was initiated and illustrated in my previous 25 research publications. Hence, this original probability paradigm will be applied in this work to the novel dynamic logic which is a development of the ordinary static logic and that was accomplished after adding the dimension of time to the classical system of axioms of logic.
Perspectives
Read the Original
This page is a summary of: The Paradigm of Complex Probability and the Novel Dynamic Logic – The Model, March 2024, Sciencedomain International,
DOI: 10.9734/bpi/mono/978-81-971164-9-0/ch1.
You can read the full text:
Contributors
The following have contributed to this page