What is it about?

The concept of mathematical probability was established in 1933 by Andrey Nikolaevich Kolmogorov by defining a system of five axioms. This system can be enhanced to encompass the imaginary numbers set after the addition of three novel axioms. As a result, any random experiment can be executed in the complex probabilities set C which is the sum of the real probabilities set R and the imaginary probabilities set M. We aim here to incorporate supplementary imaginary dimensions to the random experiment occurring in the “real” laboratory in R and therefore to compute all the probabilities in the sets R, M, and C. Accordingly, the probability in the whole set C = R + M is constantly equivalent to one independently of the distribution of the input random variable in R, and subsequently the output of the stochastic experiment in R can be determined absolutely in C. This is the consequence of the fact that the probability in C is computed after the subtraction of the chaotic factor from the degree of our knowledge of the nondeterministic experiment. We will apply this innovative paradigm to the well-known Central Limit Theorem and to prove as well its convergence in a novel way.

Featured Image

Why is it important?

Computing probabilities is all our work in the classical theory of probability. Adding new dimensions to our stochastic experiment is the innovative idea in the current paradigm which will make the study absolutely deterministic. As a matter of fact, the theory of probability is a nondeterministic theory by essence that means that all the random events outcome is due to luck and chance. Hence, we make the study deterministic by adding new imaginary dimensions to the phenomenon occurring in the “real” laboratory which is R, and therefore, a stochastic experiment will have a certain outcome in the complex probabilities set C. It is of great significance that random systems become completely predictable since we will be perfectly knowledgeable to predict the outcome of all stochastic and chaotic phenomena that occur in nature like for example in all stochastic processes, in statistical mechanics, or in the well-established field of quantum mechanics. Consequently, the work that should be done is to add the contributions of M which is the set of imaginary probabilities to the set of real probabilities R that will make the random phenomenon in C = R + M completely deterministic. Since this paradigm is found to be fruitful, then a new theory in prognostic and stochastic sciences is established and this is to understand deterministically those events that used to be stochastic events in R. This is what I coined by the term “The Complex Probability Paradigm” that was elaborated and initiated in my 25 previous papers.

Perspectives

Although I have taught courses on probability and statistics at the university level for many years, I consider myself a beginner in this branch of knowledge; in fact an absolute beginner, always thirsty to learn and discover more. I think that the mathematician who proves to be successful in tackling and mastering the theory of probability and statistics has made it halfway to understanding the mystery of existence revealed in a universe governed sometimes in our modern theories by randomness and uncertainties. The probabilistic aspect is evident in the theories of the quantum world, of thermodynamics, or of statistical mechanics, for example. Hence, the universe’s secret code, I think, is written in a mathematical language, just as Galileo Galilei expressed it in these words: “Philosophy is written in this very great book which is the universe that always lies open before our eyes. One cannot understand this book unless one first learns to understand the language and recognize the characters in which it is written. It is written in a mathematical language and the characters are triangles, circles and other geometrical figures. Without these means it is humanly impossible to understand a word of it. Without these there is only clueless scrabbling around in a dark labyrinth.”

Dr. Abdo Abou Jaoude
Notre Dame University Louaize

Read the Original

This page is a summary of: The Paradigm of Complex Probability and The Central Limit Theorem, February 2024, Sciencedomain International,
DOI: 10.9734/bpi/mono/978-81-970571-3-7/ch2.
You can read the full text:

Read

Contributors

The following have contributed to this page