What is it about?
The mathematical probability concept was set forth by Andrey Nikolaevich Kolmogorov in 1933 by laying down a five-axioms system. This scheme can be improved to embody the set of imaginary numbers after adding three new axioms. Accordingly, any stochastic phenomenon can be performed in the set C of complex probabilities which is the summation of the set R of real probabilities and the set M of imaginary probabilities. Our objective now is to encompass complementary imaginary dimensions to the stochastic phenomenon taking place in the “real” laboratory in R and as a consequence to calculate in the sets R, M, and C all the corresponding probabilities. Hence, the probability is permanently equal to one in the entire set C = R + M independently of all the probabilities of the input stochastic variable distribution in R, and subsequently the output of the random phenomenon in R can be determined perfectly in C. This is due to the fact that the probability in C is calculated after the elimination and subtraction of the chaotic factor from the degree of our knowledge of the nondeterministic phenomenon. My innovative Complex Probability Paradigm (CPP) will be applied to the established theory of quantum mechanics in order to express it completely deterministically in the universe C = R + M.
Featured Image
Why is it important?
Computing probabilities is all our work in the classical theory of probability. Adding new dimensions to our stochastic experiment is the innovative idea in the current paradigm which will make the study absolutely deterministic. As a matter of fact, the theory of probability is a nondeterministic theory by essence that means that all the random events outcome is due to luck and chance. Hence, we make the study deterministic by adding new imaginary dimensions to the phenomenon occurring in the “real” laboratory which is R, and therefore, a stochastic experiment will have a certain outcome in the complex probabilities set C. It is of great significance that random systems become completely predictable since we will be perfectly knowledgeable to predict the outcome of all stochastic and chaotic phenomena that occur in nature like for example in all stochastic processes, in statistical mechanics, or in the well-established field of quantum mechanics. Consequently, the work that should be done is to add the contributions of M which is the set of imaginary probabilities to the set of real probabilities R that will make the random phenomenon in C = R + M completely deterministic. Since this paradigm is found to be fruitful, then a new theory in prognostic and stochastic sciences is established and this is to understand deterministically those events that used to be stochastic events in R. This is what I coined by the term “The Complex Probability Paradigm” that was elaborated and initiated in my 25 previous papers.
Perspectives
Read the Original
This page is a summary of: The Paradigm of Complex Probability and Quantum Mechanics: The Infinite Potential Well Problem – The Momentum Wavefunction and The Wavefunction Entropies, February 2024, Sciencedomain International,
DOI: 10.9734/bpi/mono/978-81-970122-5-9/ch2.
You can read the full text:
Contributors
The following have contributed to this page