What is it about?

Permanent magnet synchronous generators (PMSGs) have a bright prospect in the small wind turbine (WT) applications; PMSGs compared to the conventional electrically excitated generators have many advantages, that’s why they have attracted many and a strong interest of research. In this paper, a comparative PMSG performance study's is presented, these performances is studied as a function of physical material like the type of permanent magnet (high, poor, average and linear), as a function of the environmental conditions as rotor speed, finally, as a function of the design and geometrical parameters (rotor length, number of poles, number of stator slots). These results are obtained by finite element method (FEM); this approach is a powerful and useful tool to study and design PMSGs, as represented in this paper.

Featured Image

Why is it important?

There is now general acceptance that the burning of fossil fuels is having a significant influence on the global climate. Effective mitigation of climate change will require deep reductions in greenhouse gas emissions, with UK estimates of a 60–80% cut being necessary by 2050[1], Still purer with the nuclear power, this last leaves behind dangerous wastes for thousands of years and risks contamination of land, air, and water[2]; the catastrophe of Japan is not far. Wind power can contribute to fulfilling several of the national environmental quality objectives decided by Parliament in 1991. Continued expansion of wind power is therefore of strategic importance[3], hence, the energy policy decision states that the objective is to facilitate a change to an ecologically sustainable energy production system[3], as example the Swedish Parliament adopted new energy guidelines in 1997 following the trend of moving towards an ecologically sustainable society. The decision also confirmed that the 1980 and 1991 guidelines still apply, i.e., that the nuclear power production is to be phased out at a slow rate so that the need for electrical can be met without risking employment and welfare. The first nuclear reactor of Barseback was shut down 30th of November 1999; Nuclear power production shall be replaced by improving the efficiency of electricity use, conversion in the renewable forms of energy and other environmentally acceptable electricity production technologies[3]. On the individual scale in Denmark Poul la Cour, who was among the first to connect a windmill to a generator[4]. The development of modern wind power conversion technology has been going on since 1970s, and the rapid development has been seen from 1990s. Various WT concepts have been developed and different wind generators have been built[5]. In real wind power market, three types of wind power system for large WTs exist. The first type is fixed-speed wind power (SCIG), directly connected to the grid. The second one is a variable speed wind system using a DFIG or SCIG. The third type is also a variable speed WT, PMSG[6].

Perspectives

Thermal modeling Optimization of the design

Hacene Mellah
UHBC

Read the Original

This page is a summary of: Simulations Analysis with Comparative Study of a PMSG Performances for Small WT Application by FEM, International Journal of Energy Engineering, April 2013, Scientific and Academic Publishing,
DOI: 10.5923/j.ijee.20130302.03.
You can read the full text:

Read

Resources

Contributors

The following have contributed to this page