What is it about?
Evolution of periodic orbits in Sun-Mars and Sun-Earth systems are analyzed using Poincare surface of section technique and the effects of oblateness of smaller primary on these orbits are considered. It is observed that oblateness of smaller primary has substantial effect on period, orbit’s shape, size and their position in the phase space. Since these orbits can be used for the design of low energy transfer trajectories, so perturbations due to planetary oblateness has to be understood and should be taken care of during trajectory design. In this paper, detailed stability analysis of periodic orbit having three loops is given for A2 = 0.0001.
Featured Image
Why is it important?
Evolution of periodic orbits in Sun-Mars and Sun-Earth systems are analyzed using Poincare surface of section technique and the effects of oblateness of smaller primary on these orbits are considered. It is observed that oblateness of smaller primary has substantial effect on period, orbit’s shape, size and their position in the phase space. Since these orbits can be used for the design of low energy transfer trajectories, so perturbations due to planetary oblateness has to be understood and should be taken care of during trajectory design. In this paper, detailed stability analysis of periodic orbit having three loops is given for A2 = 0.0001.
Perspectives
Read the Original
This page is a summary of: Analysis of Effect of Oblateness of Smaller Primary on the Evolution of Periodic Orbits, International Journal of Astronomy and Astrophysics, January 2016, Scientific Research Publishing, Inc,,
DOI: 10.4236/ijaa.2016.64036.
You can read the full text:
Contributors
The following have contributed to this page