What is it about?

Biofield therapies have been reported to improve the quality of life as compared to other energy medicine. The aim of the study was to evaluate the impact of Mr. Trivedi’s biofield energy treatment on Pseudomonas fluorescens (P. fluorescens) for antimicrobial sensitivity, minimum inhibitory concentration (MIC), biochemical reactions, and biotype number. P. fluorescens cells were procured from MicroBioLogics Inc., USA in sealed packs bearing the American Type Culture Collection (ATCC 49838) number and divided in control and treated group. The effect was evaluated on day 10, and 159 after biofield treatment in lyophilized state. Further study was performed on day 5, 10, and 15 after retreatment on day 159 in revived state as per study design. All experimental parameters were studied using automated MicroScan Walk-Away® system. The 16S rDNA sequencing was carried out to correlate the phylogenetic relationship of P. fluorescens with other bacterial species after treatment. The results showed improved sensitivities and decreased MIC value of aztreonam, cefepime, moxifloxacin, and tetracycline in revived and lyophilized treated sample with respect to the control. Arginine, cetrimide, kanamycin, and glucose showed altered biochemical reactions after biofield treatment with respect to control. Biotype numbers were altered along with species in lyophilized as well as in revived group. Based on nucleotides homology and phylogenetic analysis using 16S rDNA gene sequencing, treated sample was detected to be Pseudomonas entomophila (GenBank Accession Number: AY907566) with 96% identity of gene sequencing data, which was nearest homolog species to P. fluorescens (Accession No. EF672049). These findings suggest that Mr. Trivedi’s unique biofield treatment has the capability to alter changes in pathogenic P. fluorescens even in the lyophilized storage condition and can be used to modify the sensitivity of microbes against antimicrobials.

Featured Image

Why is it important?

The genus Pseudomonas is a group of ubiquitous Gram-negative rod shaped bacterium mostly present in soil, and water surfaces. Pseudomonas infections are related with high morbidity and mortality [1], and common species isolated from clinical specimen is Pseudomonas aeruginosa [2]. However, Pseudomonas fluorescens (P. fluorescens) is a member of the fluorescent pseudomonas group and mostly regarded to be of low virulence and an infrequent human infection [3]. P. fluorescens is a heterogeneous species that can be subdivided by various taxonomic criteria into several biotypes [4]. Complete genome sequence was reported in two strains, namely P. fluorescens Pf-5 genome consist of 87 RNAs and 6137 proteins, and P. fluorescens PfO-1 genome consist of 95 RNAs and 5736 proteins [5,6]. Lyophilization or freeze drying is the most widely used storage methods for drying bacteria or other biological materials. It may be considered as a two-stage process of freezing and drying. Freezing has been extensively used in case of cells and tissues [7], which can be convenient for the survival of microorganisms. Even sensitive microorganism showed satisfactory recoveries, if proper care must be taken with respect to temperature control, suspending media, and rate of cooling [8]. On the other hand, drying is also more advisable storage condition for sensitive microorganism. Above methods involved removal of moisture from a frozen solution or suspension in a high vacuum, but few exceptions in case of nonviable materials, especially proteins and tissues. This approach has been extensively used for different substance in past 40 years by numerous investigators [9,10]. Although, alterations in microbes cannot be happened in lyophilized state without any strong energy transmission. In order to evaluate the impact of Mr. Trivedi’s biofield treatment on lyophilized strain, study was designed to investigate the alteration in antibiogram pattern and its related parameters. Mr. Trivedi has the ability to harness the energy from the environment or Universe and transmit this energy into any object (living or nonliving) on the Globe. The objects always receive the energy and responding into useful way that is knows biofield energy. This process is termed as biofield treatment. Mr. Trivedi’s unique biofield treatment is also known as The Trivedi Effect®. Biofield, the electromagnetic field that surrounds the living organism will provides regulatory and communication functions within the organism. Mr. Trivedi’s biofield energy treatment was extensively studied in material science [11-13], agricultural science [14-16], in biotechnology [17]. It is reported in altering the susceptibility of antimicrobials of pathogenic microbes [18-20] and reduced the viral load in hepatitis C virus [21]. After consideration of clinical significance of P. fluorescens and significant impact of biofield treatment on microbes, a detailed investigation was studied to evaluate the impact of biofield treatment on P. fluorescens. Treatment was assessed in relation to antimicrobials susceptibility, biotyping based on various biochemical reactions. Further, genotyping of this organism was performed using 16S rDNA sequencing method.

Perspectives

Improved antimicrobial sensitivity and decreased MIC value of aztreonam, cefepime, moxifloxacin, and tetracycline in biofield treated Pseudomonas fluorescens showed significant impact of Mr. Trivedi’s biofield energy treatment. This approach can be used as a treatment approach in complementary and alternate medicine. Significant alteration in antimicrobial data was well supported with altered biochemical reactions along with biotype number. Molecular approach using standard 16S rDNA analysis showed that biofield treatment has significant impact on P. fluorescens, and sample identified as Pseudomonas entomophila with 96% identity using gene sequencing data. However, the closest homolog species was detected to be Pseudomonas fluorescens. Based on these results, it seems that Mr. Trivedi’s biofield energy treatment could be used as better alternate of existing drug therapy in future.

Mr Mahendra Kumar Trivedi
Trivedi Global Inc.

Read the Original

This page is a summary of: Bacterial Identification Using 16S rDNA Gene Sequencing and Antibiogram Analysis on Biofield Treated Pseudomonas fluorescens, Clinical & Medical Biochemistry Open Access, January 2015, OMICS Publishing Group,
DOI: 10.4172/2471-2663.1000101.
You can read the full text:

Read

Resources

Contributors

The following have contributed to this page