What is it about?

Magnesium nitride (Mg3N2) has gained extensive attention due to its catalytic and optoelectronic properties. The present investigation was aimed to evaluate the effect of biofield energy treatment on physical and thermal properties of Mg3N2 powder. The Mg3N2 powder was divided into two parts i.e. control and treated. The control part was remained as untreated and the treated part was subjected to the Mr. Trivedi’s biofield energy treatment. Subsequently, the control and treated Mg3N2 samples were characterized using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and X-ray diffraction (XRD). The DSC results showed the specific heat capacity of 2.24 Jg-1°C-1 in control, which increased upto 5.55 Jg-1°C-1 in treated Mg3N2 sample. The TGA data revealed that the onset temperature for the formation of magnesium oxide, possibly due to oxidation of Mg3N2 in the presence of air and moisture, was reduced from 421.0°C (control) to 391.33°C in treated sample. Besides, the XRD data revealed that the lattice parameter and unit cell volume of treated Mg3N2 samples were increased by 0.20 and 0.61% respectively, as compared to the control. The shifting of all peaks toward lower Bragg angle was observed in treated sample as compared to the control. The XRD diffractogram also showed that the relative intensities of all peaks were altered in treated sample as compared to control. In addition, the density of treated Mg3N2 was reduced by 0.60% as compared to control. Furthermore, the crystallite size was significantly increased from 108.05 nm (control) to 144.04 nm in treated sample as compared to the control. Altogether data suggest that biofield energy treatment has substantially altered the physical and thermal properties of Mg3N2 powder. Thus, the biofield treatment could be applied to modulate the catalytic and optoelectronic properties of Mg3N2 for chemical and semiconductor industries.

Featured Image

Why is it important?

Magnesium nitride (Mg3N2) is well-known for its role as an additive in a range of applications, including fabricating special alloys and ceramics, catalyzing polymer cross-linking reactions etc. [1]. Generally, Mg3N2 is applied as catalysts to prepare some metal nitrides or non-metal nitrides, especially cubic boron nitride. It is a convenient source of ammonia in the preparation of primary amides and dihydropyridines [2]. Recently, Mg3N2 powder has shown enormous potential for fabricating hydrogen storage materials [3]. In addition, it is also used in the formation of high thermal conductivity ceramics [4]. It has attracted considerable interest in optoelectrical field due to its direct band gap of 1.1 to 2.5 eV [5]. Besides, in catalytic activities of Mg3N2, its thermal and physical characteristics play a vital role. Recently, researcher have used various processes to prepare Mg3N2 powder with desired physical and thermal properties such as Mg direct reaction with NH3 [1], low pressure chemical vapor deposition method [6], and electrochemical process [7] etc. All these process required either expensive equipment or high power and energy sources to control its thermal and physical properties. Thus, after conceiving the vast importance of Mg3N2 in several industries, authors wish to investigate an approach that could be beneficial to modify the physical and thermal properties of Mg3N2 powder. It is well established that the energy can effectively interact with any matter at a distance and cause action. The energy is exist in various fields such as electric, magnetic etc. Furthermore, researchers have confirmed that biomagnetic fields are present around the human body, which has been evidenced by electromyography (EMG), electrocardiography (ECG) and electroencephalogram (EEG) [8,9]. Moreover, a human has the ability to harness the energy from environment/universe and can transmit it to any object (living or non-living) around the Globe. The object(s) always receive the energy and responded into useful way that is called biofield energy. This process is termed as biofield energy treatment. The National Center for Complementary and Alternative Medicine (NCCAM) considered the biofield treatment (or healing therapy) under subcategory of energy therapies [10,11]. Mr. Trivedi’s unique biofield energy treatment is known as The Trivedi Effect®. Mr. Trivedi’s biofield energy treatment is known to alter the physical, structural and atomic characteristic in several metals [12-14] and ceramics [15,16]. Our group previously reported that biofield treatment has substantially altered the lattice parameter, crystallite size, and particle size in silicon carbide [17] and manganese oxide [18]. Hence, based on the outstanding results accomplished by biofield energy treatment on metals and ceramics, an attempt was made to evaluate the effect of biofield treatment on thermal and physical properties of Mg3N2 powder using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and X-ray diffraction (XRD).

Perspectives

In summary, the biofield energy treatment has substantially altered the specific heat capacity, crystallite size, and unit cell parameters. The specific heat capacity of treated Mg3N2 was significantly increased up to 152.23% as compared to the control. The biofield treatment showed the alteration in the lattice parameter (0.20%), unit cell volume (0.61%), density (-0.60%), and molecular weight (0.61%) in treated sample as compared to control. On the basis of alteration in relative intensities of XRD peaks in treated sample as compared to control, it is concluded that the biofield energy treatment probably altered the surface morphology of the treated Mg3N2 powder. In addition, the crystallite size of the treated sample was significantly increased by 33.30% as compared to control. Therefore, based on the above outcomes it is concluded that biofield treated Mg3N2 could be more useful in chemical and optoelectronic properties.

Mr Mahendra Kumar Trivedi
Trivedi Global Inc.

Read the Original

This page is a summary of: Evaluation of Thermal and Physical Properties of Magnesium Nitride Powder: Impact of Biofield Energy Treatment, Industrial Engineering & Management, January 2015, OMICS Publishing Group,
DOI: 10.4172/2169-0316.1000177.
You can read the full text:

Read

Resources

Contributors

The following have contributed to this page