What is it about?
Barium titanate, perovskite structure is known for its high dielectric constant and piezoelectric properties, which makes it interesting material for fabricating capacitors, transducer, actuator, and sensors. The perovskite crystal structure and lattice vibrations play a crucial role in its piezoelectric and ferroelectric behavior. In the present study, the barium titanate powder was subjected to biofield treatment. Further, the control and treated samples were characterized using X-ray diffraction (XRD) and Fourier transform infrared spectrometer (FT-IR) and Electron spin resonance (ESR). The XRD analysis showed the permanent compressive strain of 0.45% in treated barium titanate powder as compared to control. Furthermore, the biofield treatment has enhanced the density upto 1.38% in barium titanate as compared to control. The FT-IR spectra showed that the stretching and bending vibrations of Ti-O bond in treated BaTiO3 were shifted towards lower frequency as compared to control. The bond length was substantially increased by 0.72 % in treated BaTiO3 as compared to control. The ESR spectra of control and treated BaTiO3 sample showed the g-factor of 2.0; and biofield treatment has substantially changed the width and height of ESR signal in treated BaTiO3 as compared to control. These observations revealed that biofield treatment has significantly altered the crystal structure, lattice strain, and bond vibration of barium titanate.
Featured Image
Why is it important?
Piezoelectric materials are commonly used in optoelectronic industries in fabricating sensor, capacitor, and actuator owing to their piezoelectricity and wide range of dielectric constant. In these materials a strong relationship exists between mechanical displacements and electric field i.e. it induce electric polarization in response to applied stress and strained in response to applied electric fields. The perovskite structure, ABO3 type material usually exhibits spontaneous polarizations in response to mechanical stress [1]. Additionally, this perovskite structure is promising in positive coefficient (PCT) resistors, light-emission devices, and field emission displays (FEDs) [2]. The perovskite, barium titanate (BaTiO3) has recently gain significant attention due to its demand for lead-free piezoelectric materials in several industries. In addition to that, the perovskite structure of BaTiO3 attracted significant attention due to its exceptional dielectric, piezoelectric, and electro optic properties [3]. These exceptional properties make it a promising material for other applications such as multilayer ceramic capacitors (MLCCs), dynamic random access ferroelectric memories (DRAMs) [4]. This material requires non-centrosymmetric crystal structure to behave as piezoelectric, because its centrosymmetric cubic crystal structure doesn’t show piezoelectricity, whereas hexagonal, tetragonal, orthorhombic, and rhombohedral shows due to their non-centrosymmetric structure [1]. In BaTiO3 the piezoelectricity is highly depends upon its crystal structure, lattice vibration, and grain size etc. Furthermore, in order to alter its piezoelectric and ferroelectric properties, many researchers have used various doping methods to modify the dielectric and piezoelectric properties [5,6]. Recently, it was reported that distortion in perovskite BatiO3 reduced symmetry, which enhanced its magnetic and electrical properties [7]. Moreover, Chernova et al. demonstrated that strain induced in BaTiO3 unit cell enhanced its ferroelectric polarizations [8]. Thus, after considering the vast importance of BatiO3 and its crystal structure in several applications, authors wish to investigate an approach that could be beneficial to modify the atomic and structural properties of BatiO3 powder. William Tiller, a physicist, reported that the existence of a new force related to human body, in addition to four well known fundamental forces of physics such as gravitational force, strong force, weak force, and electromagnetic force [9]. Biophysicist Fritz-Albert Popp et al. reported that human physiology shows a high degree of order and stability due to their coherent dynamic states [10-13]. This coherent dynamic state of human body emits the electromagnetic waves in form of bio-photons, which surrounds the body and it is known as biofield. Therefore, the biofield consisting of electromagnetic field, generated by moving electrically charged particles (ions, cell, molecule etc.) inside the human body. Furthermore, a human has ability to harness the energy from environment/universe and can transmit into any object (living or non-living) around the Globe. The object(s) always receive the energy and responded into useful way that is called biofield energy. This process is termed as biofield treatment. Mr. Trivedi’s unique biofield treatment is known as The Trivedi effect®. Mr. Trivedi’s biofield treatment is known to alter the crystal structure and atomic level changes in various ceramics and metals [14-21]. Additionally, the biofield treatment has also transformed the molecular and cellular properties in agriculture [22-24], microbiology [25-27] and biotechnology [28,29]. Recently, it was reported that biofield treatment had increased the particle size by six fold and enhanced the crystallite size by two fold in zinc powder [14]. In another report, biofield treatment has shown the significant effect in carbon allotropes, where the unit cell volume was decrease by 1% and crystallite size was increased by 100% [15]. To the best of our knowledge, this is the first report to evaluate the impact of biofield treatment on atomic and structural characteristics of BaTiO3 powder.
Perspectives
Read the Original
This page is a summary of: Impact of Biofield Treatment on Atomic and Structural Characteristics of Barium Titanate Powder, Industrial Engineering & Management, January 2015, OMICS Publishing Group,
DOI: 10.4172/2169-0316.1000166.
You can read the full text:
Resources
Impact of Biofield Treatment on Atomic and Structural Characteristics of Barium Titanate Powder
Barium titanate, perovskite structure is known for its high dielectric constant and piezoelectric properties, which makes it interesting material for fabricating capacitors, transducer, actuator, and sensors. The perovskite crystal structure and lattice vibrations play a crucial role in its piezoelectric and ferroelectric behavior. In the present study, the barium titanate powder was subjected to biofield treatment. Further, the control and treated samples were characterized using X-ray diffraction (XRD) and Fourier transform infrared spectrometer (FT-IR) and Electron spin resonance (ESR). The XRD analysis showed the permanent compressive strain of 0.45% in treated barium titanate powder as compared to control. Furthermore, the biofield treatment has enhanced the density upto 1.38% in barium titanate as compared to control. The FT-IR spectra showed that the stretching and bending vibrations of Ti-O bond in treated BaTiO3 were shifted towards lower frequency as compared to control. The bond length was substantially increased by 0.72 % in treated BaTiO3 as compared to control. The ESR spectra of control and treated BaTiO3 sample showed the g-factor of 2.0; and biofield treatment has substantially changed the width and height of ESR signal in treated BaTiO3 as compared to control. These observations revealed that biofield treatment has significantly altered the crystal structure, lattice strain, and bond vibration of barium titanate.
Industrial Engineering & Management
Omics Publishing Group
PDF
FULL TEXT ARTICLE
Contributors
The following have contributed to this page