What is it about?

Metronidazole and tinidazole are widely used antimicrobial drugs against Gram-negative and Gram-positive anaerobic bacteria. The present study was aimed to evaluate the impact of biofield treatment on metronidazole and tinidazole using FT-IR and UV spectroscopy. The study was carried out in two groups i.e. control and treatment. Treatment groups were subjected to Mr. Trivedi’s biofield treatment while no treatment was given to control group. FT-IR spectrum of treated metronidazole showed the impact of biofield treatment on frequency of characteristic functional groups such as C=C (imidazole ring) stretching was appeared at lower frequency i.e. from 1600 cm-1 to 1553 cm-1. Likewise, NO2 asymmetric stretching and C-N symmetric stretching were appeared at higher wave number i.e. 1479 cm-1 to 1501 cm-1 and 1070 cm-1 to 1077 cm-1, respectively. FT-IR spectrum of tinidazole showed shifting in absorption peak of C-N stretching to higher wavenumber from 1002 cm-1 (control) to 1022 cm-1. The wavenumber of aromatic C=C bond (in imidazole) was shifted to lower frequency, which could be due to increases in conjugation effect. Further, increases in wavenumber of NO2 and C-N in treated sample suggested the increased force constant and bond strength as compared to control. Because of higher conjugation effect and increased bond strength, the molecule supposed to be more stable. The UV spectra of both metronidazole and tinidazole showed the similar patterns of lambda max (λmax) with respect to their control. The FT-IR results of both drugs suggest that there was an impact of biofield treatment on atomic level of metronidazole and tinidazole, as compared to control.

Featured Image

Why is it important?

Metronidazole and tinidazole are structurally similar synthetic imidazole derivative and widely used as antimicrobials against several infections such as infection of intra-abdominal, respiratory tract, skin, central nervous, oral and dental, bone and joint, etc. Both the metronidazole and tinidazole are prescribed widely in bacterial vaginosis caused by Gardnerella vaginalis. These drugs are also used before and after the gastrointestinal and gynaecological surgery to reduce the risk of postoperative anaerobic infection [1-4]. In vitro study of tinidazole showed comparable or in some cases greater antiprotozoal activity than, metronidazole [3]. Both metronidazole and tinidazole enter into bacterial cell, and convert into active nitroso free radical form either in cytoplasm of the bacteria or in specific organelles of protozoa. This free nitro-radical is may be responsible for the antiprotozoal activity of both drugs. The active form of both drugs is cytotoxic and binds nonspecifically to bacterial DNA. However, the actual mechanism of action has not yet been fully discovered but it includes the inhibition of DNA synthesis and DNA damage by oxidation, resulting in single-strand and double-strand DNA breaks that lead to DNA degradation and cell death. Aerobic microbes lack the electron-transport proteins with negative redox potential, hence, metronidazole is not active against aerobic microorganisms [1,5,6]. Anaerobic microbes have been acquired resistance to metronidazole by several ways like reduction efficiency of nitroreductase, active efflux, increased DNA damage repair, and presence of specific resistance genes (nim) [7-9]. Additionally, as per Crowell et al., increased resistances to metronidazole have also decreased sensitivity to tinidazole [10]. Both metronidazole and tinidazole possess some stability related difficulty. Metronidazole degrades in alkaline condition to ammonia and acetic acid [11]. Photo-stability of metronidazole showed a rearrangement and degradation products upon UV photolysis [12]. Tinidazole is also reported to decompose hydrolytically in alkaline conditions to its 2-methyl-4 (5)-nitroimidazole and 4-nitro isomer [13]. Therefore, an alternative approach, which can enhance the shelf life of less stable drug, could be advantageous to the pharmaceutical field. Recently, biofield treatment is recognized as a new approach to alter several physical and structural properties at the atomic level of various living and non-living things [14,15]. As per Planck M, electrical current exists inside the human body in the form of vibratory energy particles like ions, protons, and electrons. These moving particles generates magnetic field in the human body [16,17]. Willem Einthoven discovered an electrocardiography in 1924 to measure the human biofield. Maxwell JC gave a hypothesis that all the electrical process happening in human body generates magnetic field [18]. It can be observe using some medical technologies such as electromyography, electrocardiography, and electroencephalogram. The electromagnetic field of the human body is known as biofield and energy associated with this field is known as biofield energy [19-21]. Mr. Trivedi has the ability to harness the energy from environment or universe and can transmit into any living or nonliving object(s) around the globe. The object(s) always receive the energy and responding into useful way. This process is known as biofield treatment. Mr. Trivedi’s biofield treatment has substantially changed the various physicochemical and structural properties of metals and ceramics [15,22,23]. Medicinal property and growth of ashwagandha were increased after exposure to biofield treatment [24]. Additionally, biofield treatment has significantly enhanced the yield, nutrient value, and quality of various herbs and agriculture products [25,26]. Moreover, the antimicrobial sensitivity, biochemical reactions pattern and biotype number of some pathogenic microorganism have also changed after biofield treatment [14,27]. Considering the impact of biofield treatment on living and nonliving things, the present study was aimed to evaluate the impact of biofield treatment on metronidazole and tinidazole and its effects were analyzed at atomic level using FT-IR and UV-Vis spectroscopic techniques.

Perspectives

Altogether, the results of present study showed the impact of biofield treatment on metronidazole and tinidazole. The FT-IR data of metronidazole showed an alteration in the wavenumber of some functional groups like C=C, NO2, C-N. Whereas, The FT-IR data of tinidazole showed an alteration in the wavenumber of some functional groups like C=C and C-N, as compared to control. It might be due to some alteration at the atomic level through biofield treatment, which could lead to increase in stability of these bonds in the respective drugs as compared to control.

Mr Mahendra Kumar Trivedi
Trivedi Global Inc.

Read the Original

This page is a summary of: Spectroscopic Characterization of Biofield Treated Metronidazole and Tinidazole, Medicinal Chemistry, January 2015, OMICS Publishing Group,
DOI: 10.4172/2161-0444.1000283.
You can read the full text:

Read

Resources

Contributors

The following have contributed to this page