What is it about?
Disulfiram is being used clinically as an aid in chronic alcoholism, while nicotinic acid is one of a B-complex vitamin that has cholesterol lowering activity. The aim of present study was to investigate the impact of biofield treatment on spectral properties of disulfiram and nicotinic acid. The study was performed in two groups i.e., control and treatment of each drug. The treatment groups were received Mr. Trivedi’s biofield treatment. Subsequently, spectral properties of control and treated groups of both drugs were studied using Fourier transform infrared (FT-IR) and Ultraviolet-Visible (UV-Vis) spectroscopic techniques. FT-IR spectrum of biofield treated disulfiram showed the shifting in wavenumber of C-H stretching from 1496 to 1506 cm-1 and C-N stretching from 1062 to 1056 cm-1. The intensity of S-S dihedral bending peaks (665 and 553 cm-1) was also increased in biofield treated disulfiram sample, as compared to control. FT-IR spectra of biofield treated nicotinic acid showed the shifting in wavenumber of C-H stretching from 3071 to 3081 cm-1 and 2808 to 2818 cm-1. Likewise, C=C stretching peak was shifted to higher frequency region from 1696 cm-1 to 1703 cm-1 and C-O (COO-) stretching peak was shifted to lower frequency region from 1186 to 1180 cm-1 in treated nicotinic acid. UV spectrum of control and biofield treated disulfiram showed similar pattern of UV spectra. Whereas, the UV spectrum of biofield treated nicotinic acid exhibited the shifting of absorption maxima (λmax) with respect of control i.e., from 268.4 to 262.0 nm, 262.5 to 256.4, 257.5 to 245.6, and 212.0 to 222.4 nm. Over all, the FT-IR and UV spectroscopy results suggest an impact of biofield treatment on the force constant, bond strength, and dipole moments of treated drugs such as disulfiram and nicotinic acid that could led to change in their chemical stability as compared to control.
Featured Image
Why is it important?
Disulfiram [bis(diethylthiocarbamoyl)disulphide] is an antabuse drug, being used clinically as an aid to the treatment of chronic alcoholism. It is the first drug approved by US Food and Drug Administration to treat the alcohol addiction [1]. Alcohol (ethanol) transforms into acetaldehyde by alcohol dehydrogenase enzyme, which further oxidized to acetic acid by acetaldehyde dehydrogenase (ADH) enzyme [2]. Disulfiram inhibits the ADH enzyme. As a result, the blood concentration of acetaldehyde increases and causes an unpleasant effect, thus increase the patient's motivation to remain abstinent [3]. In addition to this, disulfiram is reported for protozoacidal effect in vitro study [4,5]. Recently, disulfiram has shown the reactivity to latent HIV-1 expression in a primary cell model of virus latency and presently it is assessed in a clinical trial for its potential to diminish the latent HIV-1 reservoir in patients combination with antiretroviral therapy [6]. Nicotinic acid or niacin is one of the B-complex vitamins (Vitamin B3) that has cholesterol lowering activity. Recent studies showed that therapeutic doses of nicotinic acid induce a profound alteration in plasma concentration of several lipids and lipoproteins, resulting in a greater ability to increase high-density lipoprotein (HDL) cholesterol [7]. Nicotinic acid favorably affects apolipoprotein (apo), very-low-density lipoprotein (VLDL), low-density lipoprotein (LDL) and HDL [7,8]. The exact mechanism of nicotinic acid activity is unknown. However, new findings indicate that nicotinic acid inhibits directly and non-competitively to the triglycerides synthesis enzyme i.e., hepatocyte diacylglycerol acyltransferase-2, which causes acceleration of intracellular hepatic apo B degradation and thus decrease secretion of VLDL and LDL [9]. Several evidence suggest that nicotinic acid administered either alone or in combination with other cholesterol-lowering medicines can reduce the risk of cardiovascular and atherosclerosis diseases. The clinical uses of nicotinic acid are somewhat limited due to some harmless but unpleasant side effects like cutaneous flushing phenomenon, nausea, vomiting and headache [10]. The chemical and physical stability of pharmaceutical drugs or products are most desired attributes of quality that potentially affect the efficacy, safety and shelf life of drugs [11]. Hence, it is essential to find out an alternate approach, which could enhance the stability of drugs by altering the structural and bonding properties of these compounds. Contemporarily, biofield treatment is reported to alter the spectral properties of various pharmaceutical drugs like paracetamol, piroxicam, metronidazole, and tinidazole; likewise physical, and structural properties of various metals i.e., tin, lead etc. [12-14]. The conversion of mass into energy is well known in literature for hundreds of years that was further explained by Hasenohrl and Einstein [15,16]. According to Maxwell JC, every dynamic process in the human body had an electrical significance, which generates magnetic field in the human body [17]. This electromagnetic field of the human body is known as biofield and energy associated with this field is known as biofield energy [18,19]. Mr. Trivedi has the ability to harness the energy from environment or universe and can transmit into any living or nonliving object around this Globe. The object(s) always receive the energy and responding into useful way, this process is known as biofield treatment. Mr. Mahendra Kumar Trivedi’s biofield treatment (The Trivedi Effect®) has considerably changed the physicochemical, thermal and structural properties of metals and ceramics [14,20,21]. Growth and anatomical characteristics of some plants were also increased after biofield treatment [22,23]. Further, biofield treatment has showed the significant effect in the field of agriculture science [24,25] and microbiology [26,27]. Considering the impact of biofield treatment on physical and structural property of metals and ceramics, the present study was aimed to evaluate the impact of biofield treatment on spectral properties of disulfiram and nicotinic acid. The effects were analyzed using Fourier transform infrared (FT-IR) and Ultraviolet-Visible (UV-Vis) spectroscopic techniques.
Perspectives
Read the Original
This page is a summary of: Spectroscopic Characterization of Disulfiram and Nicotinic Acid after Biofield Treatment, Journal of Analytical & Bioanalytical Techniques, January 2015, OMICS Publishing Group,
DOI: 10.4172/2155-9872.1000265.
You can read the full text:
Resources
Spectroscopic Characterization of Disulfiram and Nicotinic Acid after Biofield Treatment
Disulfiram is being used clinically as an aid in chronic alcoholism, while nicotinic acid is one of a B-complex vitamin that has cholesterol lowering activity. The aim of present study was to investigate the impact of biofield treatment on spectral properties of disulfiram and nicotinic acid. The study was performed in two groups i.e., control and treatment of each drug. The treatment groups were received Mr. Trivedi’s biofield treatment. Subsequently, spectral properties of control and treated groups of both drugs were studied using Fourier transform infrared (FT-IR) and Ultraviolet-Visible (UV-Vis) spectroscopic techniques. FT-IR spectrum of biofield treated disulfiram showed the shifting in wavenumber of C-H stretching from 1496 to 1506 cm-1 and C-N stretching from 1062 to 1056 cm-1. The intensity of S-S dihedral bending peaks (665 and 553 cm-1) was also increased in biofield treated disulfiram sample, as compared to control. FT-IR spectra of biofield treated nicotinic acid showed the shifting in wavenumber of C-H stretching from 3071 to 3081 cm-1 and 2808 to 2818 cm-1. Likewise, C=C stretching peak was shifted to higher frequency region from 1696 cm-1 to 1703 cm-1 and C-O (COO-) stretching peak was shifted to lower frequency region from 1186 to 1180 cm-1 in treated nicotinic acid. UV spectrum of control and biofield treated disulfiram showed similar pattern of UV spectra. Whereas, the UV spectrum of biofield treated nicotinic acid exhibited the shifting of absorption maxima (λmax) with respect of control i.e., from 268.4 to 262.0 nm, 262.5 to 256.4, 257.5 to 245.6, and 212.0 to 222.4 nm. Over all, the FT-IR and UV spectroscopy results suggest an impact of biofield treatment on the force constant, bond strength, and dipole moments of treated drugs such as disulfiram and nicotinic acid that could led to change in their chemical stability as compared to control.
Journal of Analytical & Bioanalytical Techniques
Omics Publishing Group
PDF
FULL TEXT ARTICLE
Contributors
The following have contributed to this page