What is it about?
Objective: Chloramphenicol and tetracycline are broad-spectrum antibiotics and widely used against variety of microbial infections. Nowadays, several microbes have acquired resistance to chloramphenicol and tetracycline. The present study was aimed to evaluate the impact of biofield treatment for spectroscopic characterization of chloramphenicol and tetracycline using FT-IR and UV-Vis spectroscopy. Methods: The study was performed in two groups (control and treatment) of each antibiotic. The control groups remained as untreated, and biofield treatment was given to treatment groups. Results: FT-IR spectrum of treated chloramphenicol exhibited the decrease in wavenumber of NO2 from 1521 cm-1 to 1512 cm-1 and increase in wavenumber of C=O from 1681 cm-1 to 1694 cm-1 in acylamino group. It may be due to increase of conjugation effect in NO2 group, and increased force constant of C=O bond. As a result, stability of both NO2 and C=O groups might be increased in treated sample as compared to control. FT-IR spectrum of treated tetracycline showed the downstream shifting of aromatic C-H stretching from 3085-3024 cm-1 to 3064-3003 cm-1 and C=C stretching from 1648-1582 cm-1 to 1622-1569 cm-1 and up shifting of C-N stretching from 965 cm-1 to 995 cm-1. It may be due to enhanced conjugation effect in tetracycline, and increased force constant of C-N (CH3) bond of tetracycline as compared to control. The results indicated the enhanced stability of treated tetracycline as compared to control. UV-Vis spectra of biofield treated chloramphenicol and tetracycline showed the similar lambda max (λmax) to their respective control. It revealed that the chromophore groups of both antibiotics remained same as control after the biofield treatment. Conclusion: Based on FT-IR spectroscopic data, it is speculated that due to increase in bond strength and conjugation effect after biofield treatment, the chemical stability of both the drugs might be increased as compared to control.
Featured Image
Why is it important?
Chloramphenicol and tetracycline are structurally dissimilar broad-spectrum antibiotics that commonly act by inhibiting the protein synthesis in microbes. These are extensively used in several microbial infections including Gram-negative, Gram-positive bacteria, chlamydiae, and rickettsiae [1-3]. Chloramphenicol reversibly binds to 50S ribosomal subunit of microbes and prevents the binding of aminoacyl tRNA to 50S ribosomal subunit. Thus, it inhibits protein synthesis in bacteria, which is essential for bacterial growth [3,4]. Despite of its broad spectrum antimicrobial activities, it also has some adverse effects such as gray baby syndrome, aplastic anemia, and bone marrow depression [3,5]. Nowadays, chloramphenicol is not much effective due to development of resistance in the variety of microbes. Microbial resistances against chloramphenicol occur by several mechanisms like enzymatic (acetyltransferases and phosphotransferases) inactivation; decreasing the membrane permeability, mutation/modification in target site, and presence of efflux pumps [6]. Tetracycline exerts both bacteriostatic and bactericidal mode of action against the majority of aerobic, anaerobic, Gram-negative, and Gram-positive bacteria. It binds with 30S ribosomal subunit of microbes and block the binding of activated aminoacyl-tRNA to the A site of ribosome. Thus, it blocks the insertion of new amino acids to the nascent peptide chain [2,7,8]. Microbes acquire resistance to tetracycline by evolving the efflux pump and/or by ribosomal protection protein [9,10]. Antimicrobial resistance is now conceiving as global threat; as a result need of new antimicrobial drugs is constantly increasing. Therefore, global scientific community has attempted to discover a concept to overcome the microbial resistance i.e. reintroduction of previously used antibiotics active against multi drug resistant (MDR) bacteria. Therefore, several antimicrobial agents like chloramphenicol, tetracycline, etc are reemerging after some modifications as valuable alternatives for the treatment of difficult-to-treat microbial infections [11,12]. Stability of drug is of great importance for its efficacy. In addition, drug degradation may lead to byproducts formation. Abachi et al. showed that stability of chloramphenicol was independent of pH between 4 to 6.2, and it was susceptible to hydrolysis in aqueous media [13]. Lv et al. suggested that chloramphenicol was not stable in suspension form [14]. Liang et al evaluated the stability of tetracycline in methanol solution using UV–Visible spectroscopy, HPLC, and TLC methods. The report showed that tetracycline decomposed quickly with the influence of light and atmospheric oxygen, and formed several degradation products [15,16]. Therefore, an alternative approach is needed that can increase the shelf life of poorly stable drug. Recently an alternative approach, biofield treatment is recognized to change the various physical and structural properties at the atomic level of various living and non-living things. It is well established that electrical current coexist along with the magnetic field inside the human body in the form of vibratory energy particles like ions, protons, and electrons [16,17]. Willem Einthoven discovered an electrocardiography in 1924 to measure the human biofield. Later on, Harold Saton Burr gave the hypothesis that every dynamic process in the human body had an electrical significance. Recently, it confirmed that all the electrical process happening in human body generates magnetic field [18]. It can be observed using some medical technologies such as electrocardiography, electromyography, and electroencephalogram. The electromagnetic field of the human body is known as biofield and energy linked with this field is called biofield energy [19-21]. Thus, a human has the ability to harness the energy from environment or universe and can transmit into any living or nonliving object around this globe. The object(s) always receive the energy and responding into useful way; this process is known as biofield treatment (The Trivedi Effect®). Mr. Trivedi’s biofield treatment has altered the physicochemical and structural properties of metals and ceramics [22-24]. The growth and anatomical characteristics of medicinal plant also changed after biofield treatment [25]. The biofield treatment enhanced the yield and quality of agriculture product [26]. Moreover, the changes in antimicrobial susceptibility and biotype number of pathogenic microbe have been reported after biofield treatment [27]. Conceiving the concept of antimicrobial reuses, the present study was aimed to evaluate the impact of biofield treatment on spectral properties of two antibiotics i.e. chloramphenicol and tetracycline.
Perspectives
Read the Original
This page is a summary of: Spectroscopic Characterization of Chloramphenicol and Tetracycline: An Impact of Biofield Treatment, Pharmaceutica Analytica Acta, January 2015, OMICS Publishing Group,
DOI: 10.4172/2153-2435.1000395.
You can read the full text:
Resources
Spectroscopic Characterization of Chloramphenicol and Tetracycline: An Impact of Biofield Treatment
Objective: Chloramphenicol and tetracycline are broad-spectrum antibiotics and widely used against variety of microbial infections. Nowadays, several microbes have acquired resistance to chloramphenicol and tetracycline. The present study was aimed to evaluate the impact of biofield treatment for spectroscopic characterization of chloramphenicol and tetracycline using FT-IR and UV-Vis spectroscopy. Methods: The study was performed in two groups (control and treatment) of each antibiotic. The control groups remained as untreated, and biofield treatment was given to treatment groups. Results: FT-IR spectrum of treated chloramphenicol exhibited the decrease in wavenumber of NO2 from 1521 cm-1 to 1512 cm-1 and increase in wavenumber of C=O from 1681 cm-1 to 1694 cm-1 in acylamino group. It may be due to increase of conjugation effect in NO2 group, and increased force constant of C=O bond. As a result, stability of both NO2 and C=O groups might be increased in treated sample as compared to control. FT-IR spectrum of treated tetracycline showed the downstream shifting of aromatic C-H stretching from 3085-3024 cm-1 to 3064-3003 cm-1 and C=C stretching from 1648-1582 cm-1 to 1622-1569 cm-1 and up shifting of C-N stretching from 965 cm-1 to 995 cm-1. It may be due to enhanced conjugation effect in tetracycline, and increased force constant of C-N (CH3) bond of tetracycline as compared to control. The results indicated the enhanced stability of treated tetracycline as compared to control. UV-Vis spectra of biofield treated chloramphenicol and tetracycline showed the similar lambda max (λmax) to their respective control. It revealed that the chromophore groups of both antibiotics remained same as control after the biofield treatment. Conclusion: Based on FT-IR spectroscopic data, it is speculated that due to increase in bond strength and conjugation effect after biofield treatment, the chemical stability of both the drugs might be increased as compared to control.
Pharmaceutica Analytica Acta
Omics Publishing Group
PDF
FULL TEXT ARTICLE
Contributors
The following have contributed to this page