What is it about?
Melanoma is one of the deadliest types of skin cancer and can be difficult to treat when it's advanced. To reduce mortality rates, early detection is key. In order to do this, computer-aided systems have been developed to help dermatologists diagnose the condition. To make it more accessible to the public, researchers are working on creating portable, at-home diagnostic systems. An Android-based smartphone application utilizing image capture, preprocessing, and segmentation was developed to extract Asymmetry, Border irregularity, Color variegation, and Diameter (ABCD) features from skin lesions. Using these feature sets and support vector machines, the application can accurately classify malignant and benign cases. Processing an image takes under a second and the system's performance metrics (sensitivity, specificity, accuracy, and AUC) are competitive with or better than current methods. What's more, the user-friendly application is easy to download and navigate, which is key to making medical diagnosis more democratic.
Featured Image
Photo by Eduardo Barrios on Unsplash
Why is it important?
Melanoma is a particularly dangerous type of skin cancer and is hard to treat in its later stages. Therefore, early detection is key in reducing mortality rates. In order to assist dermatologists in doing this, computer-aided systems have been designed for desktop computers. However, there is a desire for the development of mobile, at-home diagnostics for melanoma risk assessment.
Perspectives
Read the Original
This page is a summary of: Skin Cancer Diagnostics with an All-Inclusive Smartphone Application, Symmetry, June 2019, MDPI AG,
DOI: 10.3390/sym11060790.
You can read the full text:
Contributors
The following have contributed to this page