What is it about?

A B S T R A C T Different climates of different regions do not provide the required appropriate climatic conditions to ensure thermal comfort all year long. The goal to be pursued is to achieve the best interaction between climate, building and user behaviour. Bioclimatic buildings exploit climate in order to offer their occupants the most appropriate comfortable conditions. Especially, variations in hours of sunshine, in temperature, and rainfall of a particular climate signify establishing various strategies according to seasonal differences of particular region. In winter time assembling most of solar gain, and protecting the users from the cold (heating) are important. In summer; occupants/users need more protection from the sun (cooling). Thus, bioclimatic buildings reside in tune with these natural rhythms through consulting the most of natural lighting. This paper is aimed to enable architects to rediscover the principles of bioclimatic architecture and the modern technical and architectural means to achieve them. The study persuades adjusting the Double Skin Façades (DSF) design as the disciplined approach of ensuring the major strategies of Bioclimatic Architecture. Apparently, the study seeks three delineated bioclimatic approach daylight, thermal comfort and natural ventilation in DSF systems. The study views the DFS systems as the potential inclination for bioclimatic architecture ecological principles. On this basis, a connection between Bioclimatic Architecture and DFS systems are asserted and moderated within a generalized task.

Featured Image

Why is it important?

Exploring Design Principles of Bioclimatic Architecture and Double Skin Facades as A Convincing Tool for Energy Saving * Dr. SERTAC ILTER1 1 Faculty of Architecture, Eastern Mediterranean University, Famagusta, North Cyprus E mail: sertac.ilter@emu.edu.tr A B S T R A C T Different climates of different regions do not provide the required appropriate climatic conditions to ensure thermal comfort all year long. The goal to be pursued is to achieve the best interaction between climate, building and user behaviour. Bioclimatic buildings exploit climate in order to offer their occupants the most appropriate comfortable conditions. Especially, variations in hours of sunshine, in temperature, and rainfall of a particular climate signify establishing various strategies according to seasonal differences of particular region. In winter time assembling most of solar gain, and protecting the users from the cold (heating) are important. In summer; occupants/users need more protection from the sun (cooling). Thus, bioclimatic buildings reside in tune with these natural rhythms through consulting the most of natural lighting. This paper is aimed to enable architects to rediscover the principles of bioclimatic architecture and the modern technical and architectural means to achieve them. The study persuades adjusting the Double Skin Façades (DSF) design as the disciplined approach of ensuring the major strategies of Bioclimatic Architecture. Apparently, the study seeks three delineated bioclimatic approach daylight, thermal comfort and natural ventilation in DSF systems. The study views the DFS systems as the potential inclination for bioclimatic architecture ecological principles. On this basis, a connection between Bioclimatic Architecture and DFS systems are asserted and moderated within a generalized task. CONTEMPORARY URBAN AFFAIRS (2018), 2(3), 60-66. https://doi.org/10.25034/ijcua.2018.4719 www.ijcua.com Copyright © 2018 Contemporary Urban Affairs. All rights reserved. 1. Introduction Decades, the energy consumption came to the agenda as an alerting paradigm of major global concern. In view this fact; the many researches have accomplished a novel interest in the field of ecological studies in order to provide enhancing approaches and strategies. The building construction sector has been notified as the major fact on energy consuming. Their operational energy is commonly supplied in the form of electricity, which is engendered from fossil fuels. Overall, studies reported that buildings’ energy use constitutes about one third of the global final energy use (G. B. Hanna, 2013). On this basis; sustainability spirit in architecture engaged with the manifestation of “more efficient energy use”, where an allied relationship through the external and internal environment is adjusted to be asserted. This realm significantly influenced and correlated awareness on the selection of construction type and material use in architectural design, especially façade enterprises. In the explicit of sustainability beyond architecture has imposed various approaches in various scales of illuminating the ecological responsive allocation. Fascinatingly to address the main paradigm of efficient energy use in design; the bioclimatic architecture appears as the grounded approach that signifies the major spirits (natural ventilation, heating, cooling and lighting) of efficient energy use in building design. Following “efficient energy use” aim of the sustainability in architectural design; the bioclimatic architecture demonstrates a responsive endorsement on indicating efficient way of energy use as a cognitive tool for design. In view of this fact; its principles particularly reside along with a natural dynamic interaction between user, their built environment and the outdoor climatic conditions. However, the determination of bioclimatic architecture can be adjusted either in vernacular buildings, or contemporary buildings without any style or era distinction. In other words; any type of building belonging any time dilemma might be classified as bioclimatic. In order to call a building as bioclimatic architecture; the ecological dimension of the building significantly must met with energy efficiency perspective as naturally achieving the way ventilation, heating, cooling and lighting Olgyay V. (1953), Aronin JE. (1953), Arens E et al. (1981), Lima A. (1995), Singh MK, Mahapatra S, Atreya S. (2010). In recent; a significant interests has growth in Double Skin Façade (DSF) design and its usage due to its pragmatic benefits on energy conservation contributing to the energy efficiency goal of sustainability (N. Safer, M. Woloszyn, J. J. Roux, and F. Kuznik, 2005). In recent demarcation DSF is resided in the definition of multi layer skin construction of contemporary architecture where an external skin adjoined to an internal skin through an intermediate space of airflow (J. Zhou and Y. Chen, 2010). In significant; the efficient energy use ideology is resembled in DSF with evacuating the solar radiation absorb upon a glazing envelope, which enhances continuous ventilation within the building. As a consequence; DSF impulses a minimized energy consumption use amongst accomplished cooling and heating (Z. Yılmaz and F. Çetintaş, 2005). However, its implementation is accompanied by significant challenges due to the complexity of the thermal and airflow phenomena that is involved in its behavior where adaptability is magnified in different climatic conditions (M. A. Shameri, M. A. Alghoul, K. Sopian, M. F. M. Zain, and O. Elayeb, 2011). This paper investigates pragmatic deliberations of DSF for bioclimatic architecture as one of the most appropriate resided approaches of contemporary design. Thus, the study aims to fragment the DSF key parameters as a matching convincing tool for the design principles of bioclimatic architecture. The key parameters of DSF are demarcated within the framework of the study as daylight, thermal comfort and natural ventilation. The rationalized similarities between DSF and Bioclimatic Architecture are aimed to be met within a collective perspective. The questioned key primitives of energy efficiency in two correlated approaches are drawn to illuminate a utilized scheme as a convincing tool for design of contemporary era and sustainability. 2. Incorporating Bioclimatic Architecture and DSF Principles. 2.1 Bioclimatic Architecture Bioclimatic Architecture imposes evolving climate responsive implantation in architecture through the use of appropriate project strategies considering the climatic differences of each place, in order to better improvement of the thermal comfort conditions for the occupants (Lamberts, 2006). Based on the global demarcation of international policy- Kyoto Protocol on sustainability; the bioclimatic architecture is identified as the income for reduction of energy use and other environmental impacts in order to obtain sustainability as an outcome within the challenging decade of climate change (Hyde and Rostvik, 2008). In deed; the approach provides an advantage on climate to control the heat transfer process through the right application of design elements and building technology (Goulart and Pitta, 1994; ERG, 1999 op cit). The energy save has mainly promoted with the ensured comfort conditions for occupants/users into building. Extensively in spirit; passive low energy techniques are persuaded for generating environmentally interactive, efficient and contented to human comfort standards (Yeang, 1996). On this basis the bioclimatic architecture principles are developed on representing energy efficient strategies, while the applicability is modified based on the environmental characteristics of the region and building type (Maciel, 2007).

Perspectives

Exploring Design Principles of Bioclimatic Architecture and Double Skin Facades as A Convincing Tool for Energy Saving * Dr. SERTAC ILTER1 1 Faculty of Architecture, Eastern Mediterranean University, Famagusta, North Cyprus E mail: sertac.ilter@emu.edu.tr A B S T R A C T Different climates of different regions do not provide the required appropriate climatic conditions to ensure thermal comfort all year long. The goal to be pursued is to achieve the best interaction between climate, building and user behaviour. Bioclimatic buildings exploit climate in order to offer their occupants the most appropriate comfortable conditions. Especially, variations in hours of sunshine, in temperature, and rainfall of a particular climate signify establishing various strategies according to seasonal differences of particular region. In winter time assembling most of solar gain, and protecting the users from the cold (heating) are important. In summer; occupants/users need more protection from the sun (cooling). Thus, bioclimatic buildings reside in tune with these natural rhythms through consulting the most of natural lighting. This paper is aimed to enable architects to rediscover the principles of bioclimatic architecture and the modern technical and architectural means to achieve them. The study persuades adjusting the Double Skin Façades (DSF) design as the disciplined approach of ensuring the major strategies of Bioclimatic Architecture. Apparently, the study seeks three delineated bioclimatic approach daylight, thermal comfort and natural ventilation in DSF systems. The study views the DFS systems as the potential inclination for bioclimatic architecture ecological principles. On this basis, a connection between Bioclimatic Architecture and DFS systems are asserted and moderated within a generalized task. CONTEMPORARY URBAN AFFAIRS (2018), 2(3), 60-66. https://doi.org/10.25034/ijcua.2018.4719 www.ijcua.com Copyright © 2018 Contemporary Urban Affairs. All rights reserved. 1. Introduction Decades, the energy consumption came to the agenda as an alerting paradigm of major global concern. In view this fact; the many researches have accomplished a novel interest in the field of ecological studies in order to provide enhancing approaches and strategies. The building construction sector has been notified as the major fact on energy consuming. Their operational energy is commonly supplied in the form of electricity, which is engendered from fossil fuels. Overall, studies reported that buildings’ energy use constitutes about one third of the global final energy use (G. B. Hanna, 2013). On this basis; sustainability spirit in architecture engaged with the manifestation of “more efficient energy use”, where an allied relationship through the external and internal environment is adjusted to be asserted. This realm significantly influenced and correlated awareness on the selection of construction type and material use in architectural design, especially façade enterprises. In the explicit of sustainability beyond architecture has imposed various approaches in various scales of illuminating the ecological responsive allocation. Fascinatingly to address the main paradigm of efficient energy use in design; the bioclimatic architecture appears as the grounded approach that signifies the major spirits (natural ventilation, heating, cooling and lighting) of efficient energy use in building design. Following “efficient energy use” aim of the sustainability in architectural design; the bioclimatic architecture demonstrates a responsive endorsement on indicating efficient way of energy use as a cognitive tool for design. In view of this fact; its principles particularly reside along with a natural dynamic interaction between user, their built environment and the outdoor climatic conditions. However, the determination of bioclimatic architecture can be adjusted either in vernacular buildings, or contemporary buildings without any style or era distinction. In other words; any type of building belonging any time dilemma might be classified as bioclimatic. In order to call a building as bioclimatic architecture; the ecological dimension of the building significantly must met with energy efficiency perspective as naturally achieving the way ventilation, heating, cooling and lighting Olgyay V. (1953), Aronin JE. (1953), Arens E et al. (1981), Lima A. (1995), Singh MK, Mahapatra S, Atreya S. (2010). In recent; a significant interests has growth in Double Skin Façade (DSF) design and its usage due to its pragmatic benefits on energy conservation contributing to the energy efficiency goal of sustainability (N. Safer, M. Woloszyn, J. J. Roux, and F. Kuznik, 2005). In recent demarcation DSF is resided in the definition of multi layer skin construction of contemporary architecture where an external skin adjoined to an internal skin through an intermediate space of airflow (J. Zhou and Y. Chen, 2010). In significant; the efficient energy use ideology is resembled in DSF with evacuating the solar radiation absorb upon a glazing envelope, which enhances continuous ventilation within the building. As a consequence; DSF impulses a minimized energy consumption use amongst accomplished cooling and heating (Z. Yılmaz and F. Çetintaş, 2005). However, its implementation is accompanied by significant challenges due to the complexity of the thermal and airflow phenomena that is involved in its behavior where adaptability is magnified in different climatic conditions (M. A. Shameri, M. A. Alghoul, K. Sopian, M. F. M. Zain, and O. Elayeb, 2011). This paper investigates pragmatic deliberations of DSF for bioclimatic architecture as one of the most appropriate resided approaches of contemporary design. Thus, the study aims to fragment the DSF key parameters as a matching convincing tool for the design principles of bioclimatic architecture. The key parameters of DSF are demarcated within the framework of the study as daylight, thermal comfort and natural ventilation. The rationalized similarities between DSF and Bioclimatic Architecture are aimed to be met within a collective perspective. The questioned key primitives of energy efficiency in two correlated approaches are drawn to illuminate a utilized scheme as a convincing tool for design of contemporary era and sustainability. 2. Incorporating Bioclimatic Architecture and DSF Principles. 2.1 Bioclimatic Architecture Bioclimatic Architecture imposes evolving climate responsive implantation in architecture through the use of appropriate project strategies considering the climatic differences of each place, in order to better improvement of the thermal comfort conditions for the occupants (Lamberts, 2006). Based on the global demarcation of international policy- Kyoto Protocol on sustainability; the bioclimatic architecture is identified as the income for reduction of energy use and other environmental impacts in order to obtain sustainability as an outcome within the challenging decade of climate change (Hyde and Rostvik, 2008). In deed; the approach provides an advantage on climate to control the heat transfer process through the right application of design elements and building technology (Goulart and Pitta, 1994; ERG, 1999 op cit). The energy save has mainly promoted with the ensured comfort conditions for occupants/users into building. Extensively in spirit; passive low energy techniques are persuaded for generating environmentally interactive, efficient and contented to human comfort standards (Yeang, 1996). On this basis the bioclimatic architecture principles are developed on representing energy efficient strategies, while the applicability is modified based on the environmental characteristics of the region and building type (Maciel, 2007).

Journal of Contemporary Urban Affairs
Girne American University

Read the Original

This page is a summary of: Exploring Design Principles of Bioclimatic Architecture and Double Skin Facades as A Convincing Tool for Energy Saving, Journal of Contemporary Urban Affairs, November 2018, Journal of Contemporary Urban Affairs (JCUA),
DOI: 10.25034/ijcua.2018.4719.
You can read the full text:

Read

Contributors

The following have contributed to this page