What is it about?
This paper presents a class of ratio-type estimators for the evaluation of finite population mean under maximum and minimum values by using knowledge of the auxiliary variable. The properties of the proposed estimators in terms of biases and mean square errors are derived up to first order of approximation. Also, the performance of the proposed class of estimators is shown theoretically and these theoretical conditions are, then, verified numerically by taking three natural populations under which the proposed class of estimators performed better than other competing estimators.
Featured Image
Why is it important?
This paper presents a class of ratio-type estimators for the evaluation of finite population mean under maximum and minimum values by using knowledge of the auxiliary variable.
Perspectives
Read the Original
This page is a summary of: Improved ratio-type estimators using maximum and minimum values under simple random sampling scheme, Hacettepe Journal of Mathematics and Statistics, October 2014, Hacettepe Journal of Mathematics and Statistics,
DOI: 10.15672/hjms.2014297480.
You can read the full text:
Contributors
The following have contributed to this page