What is it about?
Activated carbons are obtained by chemical activation of African Palm shells (Elaeis guineensis) with different impregnating agents, i. e. magnesium chloride (MgCl2) and calcium chloride (CaCl2) aqueous solutions at dif- ferent concentrations (3, 5 and 7 % w/v) and temperatures (between 773 and 1073 K), in order to assess their influence on the development of the porosity. The activated carbons prepared are characterized in terms of both textural and chemical properties. The activated carbons have a surface area and a pore volume ranging between 19 and 501 m2 .g−1 and 0.03–0.29 cm3.g−1, respectively. Based on the obtained results, the samples with higher surface area and pore volume (i. e. those impregnated with MgCl2 and CaCl2 solutions and thermally treated at 1073 K) are selected to evaluate the adsorption capacity and affinity for CO2. CO2 adsorption capacity varies between 1.78 and 2.95 mmolCO2.g−1at 273 K and low pressure, and the activated carbon impregnated with the solution of MgCl2 3% and activated at 1073 K (i. e. ACMg3-1073) showed the best performances. Finally, the kinetic results show that adsorption rate for sample ACMg3-1073 is enhanced by its micro-mesoporous nature, being the access routes to the micropores larger.
Featured Image
Read the Original
This page is a summary of: Adsorption of CO2 onto Activated Carbons Prepared by Chemical Activation with Metallic Salts, International Journal of Chemical Reactor Engineering, December 2017, De Gruyter,
DOI: 10.1515/ijcre-2017-0029.
You can read the full text:
Contributors
The following have contributed to this page