What is it about?
Renal ischemia/reperfusion injury (IRI) represents the main reason for acute kidney injury (AKI). Dexmedetomidine (Dex) and Benincasa cerifera (BC) have wide benefits due to their anti-inflammatory and antioxidant properties. This study aims to illustrate the protective effects of BC and Dex on renal IRI in a diabetic model. Sixty adult male albino rats (Wistar strain), weighing 250–300 g, were included in the study. The rats were divided into four groups, as follows: sham group: non-diabetic; diabetes mellitus (DM) + IRI group: streptozotocin (STZ)-induced diabetic rats exposed to renal IRI on day 30 after diagnosis of diabetes; DM + IRI + BC group: STZ-induced diabetic rats treated with BC (500 mg/kg) for 30 days after diagnosis of diabetes, then exposed to renal IRI; and DM + IRI + Dex group: STZ-induced diabetic rats treated with Dex (100 µg/kg intraperitoneally) 5 min before induction of ischemia on day 30 after diagnosis of diabetes, then exposed to renal IRI. Biochemical parameters, histopathological examination, and immunohistochemical markers were evaluated. A significant improvement in the biochemical, histopathological, and immunohistochemical parameters was observed in the DM + IRI + BC group, while the DM + IRI + Dex group showed improvements in renal IRI and dyslipidemia. The present study demonstrated that oxidative stress plays a chief role in renal IRI in the STZ-induced diabetic model. Treatment with BC achieved excellent ameliorative effects, while treatment with DEX improved renal IRI. Keywords: Diabetes; Dexmedetomidine; Ischemia/Reperfusion; Oxidative Stress
Featured Image
Why is it important?
Renal ischemia/reperfusion injury (IRI) represents the main reason for acute kidney injury (AKI). Dexmedetomidine (Dex) and Benincasa cerifera (BC) have wide benefits due to their anti-inflammatory and antioxidant properties. This study aims to illustrate the protective effects of BC and Dex on renal IRI in a diabetic model. Sixty adult male albino rats (Wistar strain), weighing 250–300 g, were included in the study. The rats were divided into four groups, as follows: sham group: non-diabetic; diabetes mellitus (DM) + IRI group: streptozotocin (STZ)-induced diabetic rats exposed to renal IRI on day 30 after diagnosis of diabetes; DM + IRI + BC group: STZ-induced diabetic rats treated with BC (500 mg/kg) for 30 days after diagnosis of diabetes, then exposed to renal IRI; and DM + IRI + Dex group: STZ-induced diabetic rats treated with Dex (100 µg/kg intraperitoneally) 5 min before induction of ischemia on day 30 after diagnosis of diabetes, then exposed to renal IRI. Biochemical parameters, histopathological examination, and immunohistochemical markers were evaluated. A significant improvement in the biochemical, histopathological, and immunohistochemical parameters was observed in the DM + IRI + BC group, while the DM + IRI + Dex group showed improvements in renal IRI and dyslipidemia. The present study demonstrated that oxidative stress plays a chief role in renal IRI in the STZ-induced diabetic model. Treatment with BC achieved excellent ameliorative effects, while treatment with DEX improved renal IRI. Keywords: Diabetes; Dexmedetomidine; Ischemia/Reperfusion; Oxidative Stress
Perspectives
Read the Original
This page is a summary of: The Ameliorative Potential of Dexmedetomidine and Benincasa Cerifera Extract in Renal Ischemia/Reperfusion Injury in A Streptozotocin-Induced Diabetic Model, Biomedical & Pharmacology Journal, March 2018, Oriental Scientific Publishing Company,
DOI: 10.13005/bpj/1373.
You can read the full text:
Resources
Contributors
The following have contributed to this page