What is it about?
The objective of the current research was to investigate the impact of the biofield energy treatment on the isotopic abundance ratios of PM+1/PM, PM+2/PM and PM+3/PM in 3-CNB using gas chromatography – mass spectrometry (GC-MS).
Featured Image
Why is it important?
The present study concluded that biofield energy treatment had potential impact on the isotopic abundance ratios of PM+1/PM, PM+2/PM, and PM+3/PM in 3-CNB that might lead to alteration of the physicochemical and thermal properties. The GC-MS spectra of the both control and biofield treated 3-CNB specified the presence of molecular ion peak [M+] at m/z 157 (calculated 156.99 for C6H4ClNO2) along with nearly similar fragmentation pattern. In addition, the relative intensities of the parent molecule and other fragmented ions of the biofield treated 3-CNB were altered with respect to the control 3-CNB. The isotopic abundance ratio of PM+1/PM in the biofield treated 3-CNB at T1, T2, T3 and T4 was increased by 11.62, 18.50, 29.82, and 4.59%, respectively with respect to the control 3-CNB. Consequently, the percentage change of the isotopic abundance ratio of PM+2/PM was increased in the biofield treated 3-CNB at T1, T2, T3, and T4 by 0.25, 15.22, 35.09, and 1.57%, respectively with respect to the control sample. Similarly, the percentage of the isotopic abundance ratio of PM+3/PM was improved in the biofield treated 3-CNB at T1, T2, T3, and T4 by 4.67, 18.69, 31.31 and 6.08%, respectively with respect to the control 3-CNB. In brief, 13C, 2H, 15N, and 17O contributions from (C6H4ClNO2)+ to m/z 158, 37Cl and 18O contributions from (C6H4ClNO2)+ to m/z 159 and the different possible combinations of 18O and 37Cl with 13C, 2H and 15N contributions from (C6H4ClNO2)+ to m/z 160 in the biofield treated 3-CNB were significantly increased particularly at T2 and T3 and was found that biofield energy treatment has time dependent effect on it. The biofield energy treated 3-CNB might display the different isotope effects due to the increased isotopic abundance ratio with respect to the control sample. Hence, the biofield treated 3-CNB might have the altered physicochemical and thermal properties and the rate of the chemical reaction as compared to the control sample. The biofield energy treated 3-CNB might play an important role in designing the synthesis of pharmaceuticals, agricultural chemicals, dyes, corrosion inhibitors and other several useful industrial chemicals.
Read the Original
This page is a summary of: Determination of Isotopic Abundance of <sup>13</sup>C/<sup>12</sup>C or <sup>2</sup>H/<sup>1</sup>H and <sup>18</sup>O/<sup>16</sup>O in Biofield Energy Treated 1-Chloro-3-Nitroben..., Science Journal of Analytical Chemistry, January 2016, Science Publishing Group,
DOI: 10.11648/j.sjac.20160404.11.
You can read the full text:
Resources
Contributors
The following have contributed to this page