What is it about?
The by-products of industrially processed fish are enzymatically converted into fish protein isolates and hydrolysates having a wide biological activity and nutritional properties. However, the heat processing may cause their thermal denaturation thereby causing the conformational changes in them. The present study utilized the strategy of biofield energy treatment and analysed its impact on various properties of the fish peptone as compared to the untreated (control) sample. The fish peptone sample was divided into two parts; one part was subjected to Mr. Trivedi’s biofield treatment, coded as the treated sample and another part was coded as the control. The impact of biofield treatment was analysed through various analytical techniques and results were compared with the control sample. The particle size data revealed 4.61% increase in the average particle size (d50) along with 2.66% reduction in the surface area of the treated sample as compared to the control. The X-ray diffraction studies revealed the amorphous nature of the fish peptone sample; however no alteration was found in the diffractogram of the treated sample with respect to the control. The Fourier transform infrared studies showed the alterations in the frequency of peaks corresponding to N-H, C-H, C=O, C-N, and C-OH, functional groups in the treated sample as compared to the control. The differential scanning calorimetry data revealed the increase in transition enthalpy (∆H) from -71.14 J/g (control) to -105.32 J/g in the treated sample. The thermal gravimetric analysis data showed the increase in maximum thermal degradation temperature (Tmax) from 213.31°C (control) to 221.38°C along with a reduction in the percent weight loss of the treated sample during the thermal degradation event. These data revealed the increase in thermal stability of the treated fish peptone and suggested that the biofield energy treatment may be used to improve the thermal stability of the heat sensitive compounds.
Featured Image
Why is it important?
The fisheries industry is a major source of income for various countries worldwide. However, the industrially processed fish that is utilized for human consumption yields more than 3.17 million tons by-products per year [1]. These by-products require proper disposal and hence creates the huge revenue loss to the seafood industry [2]. Therefore, the emphasis was done to find the new uses for these waste by-products. In recent years, several advancements in biotechnology field utilize the marine by-products and convert them into some product of interest [3]. It includes their conversion in protein isolates and hydrolysates having functional food properties and natural food antioxidants [4]. The protein converts into smaller peptides through enzymatic conversion and their breakdown products yield protein hydrolysates. Many researchers have reported the biological activity and nutritional values of protein hydrolysates through their bioactive peptides [5, 6]. The peptones are a mixture of polypeptides and amino acids that are used in several biotechnological applications. They are derived from the acid or enzymatic hydrolysis of natural products such as bovine or porcine meat, milk, yeasts, and plants. The peptones are mainly used in the production of media for fermentation, tissue culture, and vaccine stabilizers [7]. The main source of peptone is animal tissues; however it faces the problem of bovine spongiform encephalopathy, a neurodegenerative disease and commonly known as mad cow disease. The main cause of this disease is a specific type of misfolded protein, prion and transmitted to the healthy animals through infected sheep and goats [8]. The problems related to animal tissue peptones and their increased demand as raw material focuses the attention towards fish peptones due to their non-meat origin, free from swine-flu, and inexpensive, as derived from fish by-products [9, 10]. Further researches proved fish peptone as a source of high protein and a balance of amino acids, hence used as the main source of industrial peptones. The peptones as a source of nitrogen become the most expensive part of growth media in the fermentation industry [11]. Besides, during processing such kind of products are subjected to various thermal treatments to inactivate the antinutritional factors, remove allergens, and to obtain the required solubility and texture [12]. However, they may face the problem of some conformational changes due to their thermal denaturation during heating that might affect their solubility, stability, and shelf-life [13, 14]. Therefore, it creates the need for some alternative strategies that may help to improve the stability related issues of this compound in a cost-effective manner. The biofield energy treatment was reported as a measure for increasing the thermal stability of some organic products [15]. It is a putative form of energy that surrounds the body of all living organisms and can be exchanged with the environment [16, 17]. A human can harness the energy from the environment or universe and can transmit it to any living or non-living object. The object(s) will receive the energy and respond to useful way, this process is termed as biofield treatment. It is reported for the efficacy and benefits in cancer and arthritis patients [18, 19]. Moreover, Mr. Trivedi is also well known for his unique biofield energy treatment, The Trivedi Effect®. It was reported for its impact on the plants [20], microorganisms [21], and culture medium [22]. Hence, the present work was aimed to treat the fish peptone by Mr. Trivedi’s biofield energy and evaluate the impact on the physicochemical properties and stability of the fish peptone using various analytical techniques viz. particle size analyser, surface area analyser, X-ray diffraction, Fourier transform infrared spectroscopy, UV-visible spectroscopy, differential scanning calorimetry, and thermogravimetric analysis.
Perspectives
Read the Original
This page is a summary of: Physical, Spectroscopic and Thermal Characterization of Biofield Treated Fish Peptone, European Journal of Biophysics, January 2015, Science Publishing Group,
DOI: 10.11648/j.ejb.20150306.12.
You can read the full text:
Resources
Physical, Spectroscopic and Thermal Characterization of Biofield Treated Fish Peptone
The by-products of industrially processed fish are enzymatically converted into fish protein isolates and hydrolysates having a wide biological activity and nutritional properties. However, the heat processing may cause their thermal denaturation thereby causing the conformational changes in them. The present study utilized the strategy of biofield energy treatment and analysed its impact on various properties of the fish peptone as compared to the untreated (control) sample. The fish peptone sample was divided into two parts; one part was subjected to Mr. Trivedi’s biofield treatment, coded as the treated sample and another part was coded as the control. The impact of biofield treatment was analysed through various analytical techniques and results were compared with the control sample. The particle size data revealed 4.61% increase in the average particle size (d50) along with 2.66% reduction in the surface area of the treated sample as compared to the control. The X-ray diffraction studies revealed the amorphous nature of the fish peptone sample; however no alteration was found in the diffractogram of the treated sample with respect to the control. The Fourier transform infrared studies showed the alterations in the frequency of peaks corresponding to N-H, C-H, C=O, C-N, and C-OH, functional groups in the treated sample as compared to the control. The differential scanning calorimetry data revealed the increase in transition enthalpy (∆H) from -71.14 J/g (control) to -105.32 J/g in the treated sample. The thermal gravimetric analysis data showed the increase in maximum thermal degradation temperature (Tmax) from 213.31°C (control) to 221.38°C along with a reduction in the percent weight loss of the treated sample during the thermal degradation event. These data revealed the increase in thermal stability of the treated fish peptone and suggested that the biofield energy treatment may be used to improve the thermal stability of the heat sensitive compounds.
European Journal of Biophysics
Science Publishing Group
PDF
FULL TEXT ARTICLE
Contributors
The following have contributed to this page