What is it about?

Manganese sulfide (MnS) is known for its wide applications in solar cell, opto-electronic devices, and photochemical industries. The present study was designed to evaluate the effect of biofield energy treatment on the atomic and physical properties of MnS. The MnS powder sample was equally divided into two parts, referred as to be control and to be treated. The treated part was subjected to Mr. Trivedi’s biofield energy treatment. After that, both control and treated samples were investigated using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, and electron spin resonance (ESR) spectroscopy. The XRD data revealed that the biofield energy treatment has altered the lattice parameter, unit cell volume, density, and molecular weight of the treated MnS sample as compared to the control. The crystallite size on various planes was significantly changed from -50.0% to 33.3% in treated sample as compared to the control. The FT-IR analysis exhibited that the absorption band attributed to Mn-S stretching vibration was reduced from (634 cm-1) to 613 cm-1 in treated MnS as compared to the control. Besides, the ESR study revealed that g-factor was reduced by 3.3% in the treated sample as compared to the control. Therefore, the biofield energy treated MnS could be applied for the use in solar cell and semiconductor applications.

Featured Image

Why is it important?

Manganese chalcogenides MnX (X = O, S, Se, Te) are known for their interesting electronic structure and magneto-optical properties. The variable oxidation states and less toxicity of these compounds make them promising materials in wide range of application [1]. The Manganese sulfide (MnS), a part of manganese chalcogenides family, is a wide band semiconductor with an energy band gap of 3.1 eV. It usually exist in three forms as α- MnS, β- MnS, and γ-MnS [2-4]. The MnS is used in various application such as solar cell, opto-electronic devices, and photochemical materials [5, 6]. Currently, it is synthesized using various methods including hydrothermal method [7, 8], chemical bath deposition [9], solvothermal synthesis [10], etc. For industrial applications, the crystal structure, physical and atomic properties of MnS play an important role. Further, a considerable effort has been made by researchers to modify the crystalline phases and surface morphologies of MnS [11, 12]. Veeramanikandasamy et al. had modified the microstructure and optical properties of MnS using different Mn/S ratio [13]. Further, Shi et al. had studied the effect of hydrothermal annealing on the structure, morphology and optical properties of MnS films [14]. However, all these process are very complex and costly, thus an economically viable approach is needed to modify the MnS with respect to physical and atomic properties. Recently, the biofield energy treatment have gained significant attention due to its potential effect on various living and non-living things [15, 16]. It is well established that the energy can be transferred from one place to another place using several scientific techniques. Further, it exists in various forms such as thermal, electric, kinetic, nuclear, etc. The living organisms are exchanging their energy with the environment for their health maintenance [17]. Moreover, a human has the capability to harness the energy from the environment/Universe and transmit it to any object around the Globe. The object(s) receive the energy and respond in a useful way that is called biofield energy, and this process is known as biofield energy treatment. The National Center for Complementary and Alternative Medicine (NCCAM) has recommended the use of alternative CAM therapies (e.g. healing therapy) in the healthcare sector [18]. Moreover, Mr. Trivedi’s unique biofield energy treatment (The Trivedi Effect®) had been extensively studied in materials science [19]. It has substantially altered the atomic, physical and thermal properties in metals [20, 21] and ceramics [22]. Thus, after considering the effect of biofield energy treatment on metals and ceramics, this study was designed to evaluate the effect of this treatment on the atomic and physical properties of the MnS using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, and electron spin resonance spectroscopy (ESR).

Perspectives

The effect of biofield energy treatment on the atomic and physical properties of MnS was analyzed. The XRD data revealed that the biofield energy treatment has altered the lattice parameter, unit cell volume, density, and molecular weight of the treated MnS sample as compared to the control. The alteration in molecular weight could be due to the interaction of biofield energy with the neutron and proton of the MnS nucleus. The crystallite size on crystalline plane (220) was reduced upto 50% in the treated sample as compared to the control. The change in crystallite size may alter the energy band gap of MnS. Besides, the FT-IR analysis revealed that the absorption band attributed to Mn-S stretching vibration was reduced from 634 cm-1 (control) to 613 cm-1 in the treated MnS as compared to the control. It may be due to reduction of bond force constant in MnS through biofield energy treatment. In addition, biofield energy treatment has reduced the g-factor by 3.3% (2.162→2.090) in the treated sample as compared to the control. Thus, above data suggested that biofield energy treatment has considerable impact on the atomic and physical properties of MnS. Therefore, the biofield energy treatment could be applied to modify the atomic and physical properties of MnS for the solar cell and semiconductor industries.

Mr Mahendra Kumar Trivedi
Trivedi Global Inc.

Read the Original

This page is a summary of: Characterization of Atomic and Physical Properties of Biofield Energy Treated Manganese Sulfide Powder, American Journal of Physics and Applications, January 2015, Science Publishing Group,
DOI: 10.11648/j.ajpa.20150306.15.
You can read the full text:

Read

Resources

Contributors

The following have contributed to this page