What is it about?

Antimicrobial resistance is a global health issue in the developing countries. This study was carried out to evaluate the impact of Mr. Trivedi’s biofield energy treatment on multidrug resistant (MDR) clinical lab isolates (LSs) of Staphylococcus species viz. Staphylococcus haemolyticus (LS 18), Staphylococcus epidermidis (LS 21), and Staphylococcus aureus (LS 30). Each strain was divided into the two groups i.e. control and treated. The control and treated groups were analyzed for the antimicrobial susceptibility pattern, minimum inhibitory concentration (MIC), biochemical analysis and biotype number using MicroScan Walk-Away® system. The analysis was done on day 10 after biofield treatment and compared with the control group. The sensitivity of erythromycin was improved from resistant to susceptible, while levofloxacin sensitivity was also improved from intermediate to susceptible in LS 21 isolate. The MIC results showed a decrease in the concentrations of ceftriaxone, erythromycin, imipenem, and levofloxacin antimicrobials in LS 21 as compared to the control. Linezolid and vancomycin also showed decrease in MIC as compared to the control in LS 30. Overall, 20.69% antimicrobials showed decrease in MIC value out of the tested twenty-nine after biofield treatment in Staphylococcus species. The biochemical study showed a 25% alteration in biochemical reactions as compared to the control. A significant change was reported in biotype numbers for all the three strains of MDR Staphylococcus species after biofield treatment as compared to the respective control group. On the basis of changed biotype number (306366) after biofield treatment in LS 18, the new organism was identified as Staphylococcus simulans with respect to the control species i.e. Staphylococcus haemolyticus (302302). The control group of S. epidermidis and S. aureus showed biotype number as 303064 and 757153 respectively. After biofield treatment, LS 21 and LS 30 isolates showed altered biotype number as 307064 and 317153 respectively. Overall, results conclude that biofield treatment could be used as complementary and alternative treatment strategy against multidrug resistant strains of Staphylococcus species with improved sensitivity and reduced MIC values of antimicrobial.

Featured Image

Why is it important?

Staphylococci are members of the family Staphylococcaceae. They are Gram-positive, catalase-positive and appear as isolated or in irregular grape-like clusters. The classification in this family is based on the production of coagulase [1]. The genus Staphylococcus represents a broad family of species and subspecies, which are widely distributed in nature and consists of approximately 45 species. The skin and mucosal membranes are the main habitats of the human infections. Staphylococci usually maintain the symbiotic relationship with host followed by crossing the cutaneous barrier and may reach other tissues and proliferate [2]. Staphylococcus haemolyticus (S. haemolyticus) is the second most common coagulase-negative staphylococci in the human blood, and is associated with bacteremia, skin or soft tissue infections, prosthetic join infections, or meningitis [3]. S. haemolyticus and Staphylococcus lugdunensis recently reported to have association with native valve endocarditis [4]. Staphylococcus epidermidis (S. epidermidis) being the most prevalent species on the skin causing different central line-associated bloodstream infections [5]. S. epidermidis is regarded as the commensal microorganism on the human skin which is mostly associated with the nosocomial infections [6]. Staphylococcus aureus (S. aureus) is classified as the major serious human pathogen causing infections worldwide, however the other strains of Staphylococcus coagulase negative cocci have recently reported to the cause serious human infections [7]. Ten major and basic causes of death worldwide are due to the nosocomial blood infections by pathogenic clinical isolates of S. aureus [8]. S. aureus produces toxins that cause various disturbances of the immune system [9]. Increased resistance among the different pathogenic strains of Staphylococcus species against broad spectrum antibiotics is the major health problem, which limits the treatment options in front of the physicians. Alternative treatment approach to alter the sensitivity profile of antimicrobials using biofield treatment on multidrug resistant (MDR) microorganism is recently reported [10, 11]. Biofield is the name given to the electromagnetic field that permeates and surrounds the living organisms. It is the scientifically preferred term for the biologically produced electromagnetic and subtle energy field that provides regulatory and communication functions within the organism. In spite of several study reports of the effectiveness of the biofield healing therapies [12], there are very few well-controlled and peer-reviewed experimental studies on pathogenic microorganisms. The biofield energy can be monitored by using electromyography (EMG), electrocardiography (ECG) and electroencephalogram (EEG) [13]. Mr. Trivedi has the ability to harness the energy from environment or universe and can transmit into any living or nonliving object(s) around the Universe. The objects always receive the energy and responding into useful way via biofield energy and Mr. Trivedi’s unique biofield energy treatment is also known as The Trivedi Effect®. Mr. Trivedi’s biofield treatment was extensively studied in different fields such as in material science [14-16], agricultural science [17-19], and in biotechnology [20]. Further, the biofield treatment has considerably altered the susceptibility of antimicrobials and biotype of microbes [10, 11, 21]. By considering the significant reports on the biofield treatment, the present work was designed to evaluate the influence of biofield energy treatment on MDR strains of Staphylococcus species (S. haemolyticus, S. epidermidis and S. aureus) with respect to antibiogram typing, biochemical reaction pattern, followed by biotyping.

Perspectives

Overall results suggested the impact of biofield treatment on Staphylococcus species. Antimicrobial sensitivity results in improved sensitivity pattern of erythromycin, with eight-fold decrease in MIC value (i.e. >4 to ≤0.5 µg/mL), while, levofloxacin was also reported with improved sensitivity pattern with improved MIC value (4 to ≤2 µg/mL) in biofield treated S. epidermidis. Biofield treatment on Staphylococcus species showed altered effect on 25% tested biochemicals and biotype numbers. A significant change in biotype number (306366) on the basis of altered biochemical reactions as compared to control (302302). Altered biotype number results in identification of new organism as Staphylococcus simulans with respect to control species as S. haemolyticus in LS 18 after biofield treatment. Based on the results, Mr. Trivedi’s biofield energy treatment could be applied to improve the sensitivity pattern of antimicrobials, against multidrug resistance strains of Staphylococcus species.

Mr Mahendra Kumar Trivedi
Trivedi Global Inc.

Read the Original

This page is a summary of: Antibiogram Typing of Biofield Treated Multidrug Resistant Strains of <i>Staphylococcus</i> Species, American Journal of Life Sciences, January 2015, Science Publishing Group,
DOI: 10.11648/j.ajls.20150305.16.
You can read the full text:

Read

Resources

Contributors

The following have contributed to this page