What is it about?

The objective of the present study was to evaluate the effect of biofield energy treatment on the isotopic abundance ratios of PM+1/PM, and PM+2/PM in o- and m-nitrophenol using the gas chromatography-mass spectrometry.

Featured Image

Why is it important?

The current study concluded that the biofield energy treatment has a remarkable ability for altering the isotopic abundance ratios in o– and m-nitrophenol. The gas chromatography-mass spectrometric (GC-MS) analysis of the both control and biofield energy treated samples indicated the presence of the molecular ion peak at m/z 139 (calculated 139.03 for C6H5NO3+) along with major fragmented peaks at m/z 122, 109, 93, 81, 65, and 39. Only, the relative peak intensities of the fragmented ions in the biofield treated samples were altered from the control samples. The isotopic abundance ratio of biofield energy treated o-nitrophenol exhibited that the isotopic abundance ratio of PM+1/PM at the T2 and T3 was significantly increased by 14.48 and 86.49%, respectively as compared to the control sample. Subsequently, the isotopic abundance ratio of PM+2/PM in biofield energy treated o-nitrophenol at T2 and T3 was increased by 11.36 and 82.95%, respectively as compared to the control sample. Similarly, the isotopic abundance ratio of biofield treated m-nitrophenol revealed the isotopic abundance ratio of PM+1/PM at T1, T3, and T4 was increased by 5.82, 5.09, and 6.40%, respectively as compared to the control sample. The isotopic abundance ratio of PM+2/PM in the biofield energy treated m-nitrophenol at T1, T2, T3 and T4 was increased by 6.33, 3.80, 16.46, and 16.46%, respectively in comparison to the control sample. It was observed that the isotopic abundance ratios of PM+1/PM and PM+2/PM in the biofield treated samples were altered with respect to the time. The biofield energy treated o– and m-nitrophenol had increased isotopic abundance ratio, it might have altered the physicochemical, thermal properties, and could be more advantageous in pharmaceutical and chemical industries as intermediates during the preparation of the fine finished product.

Read the Original

This page is a summary of: Evaluation of Isotopic Abundance Ratio in Biofield Energy Treated Nitrophenol Derivatives Using Gas Chromatography-Mass Spectrometry, American Journal of Chemical Engineering, January 2016, Science Publishing Group,
DOI: 10.11648/j.ajche.20160403.11.
You can read the full text:

Read

Resources

Contributors

The following have contributed to this page