What is it about?

Triphenyl phosphate (TPP) is a triester of phosphoric acid and phenol. It is commonly used as a fire-retarding agent and plasticizer for nitrocellulose and cellulose acetate. The present study was an attempt to evaluate the impact of biofield treatment on physicochemical and spectroscopic properties of TPP. The study was carried out in two groups i.e. control and treatment. The treatment group was subjected to Mr. Trivedi’s biofield treatment. The control and treated samples of TPP were characterized using X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR), and ultraviolet-visible (UV-Vis) spectroscopy. XRD study revealed the decrease in crystallite size (6.13%) of treated TPP that might be due to presence of strains and increase in atomic displacement from their ideal lattice positions as compared to control sample. DSC thermogram of treated TPP showed the increase in melting temperature (1.5%) and latent heat of fusion (66.34%) with respect to control. TGA analysis showed the loss in weight by 66.79% in control and 47.96% in treated sample. This reduction in percent weight loss suggests the increase of thermal stability in treated sample as compared to control. FT-IR and UV spectroscopic results did not show the alteration in the wavenumber and wavelength of FT-IR and UV spectra, respectively in treated TPP with respect to control. Altogether, the XRD and DSC/TGA results suggest that biofield treatment has the impact on physical and thermal properties of treated TPP.

Featured Image

Why is it important?

Organophosphorus compounds are comprising carbon–phosphorus bonds. These are mainly used for pest control as an alternative to chlorinated hydrocarbons that persist in the environment [1]. Phosphate esters are the groups of organophosphorus compounds with the general structure P(=O) (OR)3. Triphenyl phosphate is the triester of phosphoric acid and phenol, which is mainly used as the flame retardant agents and plasticizers [2]. Recently, TPP reported as an electrolyte additive to improve the electrochemical performance and thermal safety of lithium-ion cells. The conventional lithium-ion batteries have the major issues of safety concerns in the practical application. The TPP is reported to be stable at potentials up to 4.9 V (vs. Li/Li+), therefore electrolyte containing TPP had enhanced thermal stability [3]. As evidenced from the literature, the thermal properties of TPP are crucial for its applications as flame retardant agent [4]. Hence, it is advantageous to find out an alternate approach that can improve the thermal stability and other physicochemical properties of TPP in order to get the more useful product. Recently, biofield treatment was reported to alter the physicochemical properties of several metals [5, 6] and ceramics [7, 8] and spectroscopic properties of various pharmaceutical drugs like paracetamol, piroxicam, chloramphenicol and tetracycline. [9, 10]. German scientist George Christopher Lichtenberg coined the term Bioelectrography in 1770 and reported that light coming out from different subjects in electrical fields [11]. It is well known that moving atoms in translation, rotation or vibration state produces the electromagnetic radiation, which is also evident from acoustic and vibrational spectroscopy [12]. Similarly, the cells present in human body are also consist with electrons, protons, neutrons and other fundamental particles that are always in vibratory motion. As a result, the bioenergetic field emitted, which surround the human body [13]. In addition, human body used psychological and emotional energies in the form of electrical impulses that also generates the bioenergetic fields to outside the human body [14]. A human has the ability to harness the energy from the environment or Universe and transmit this energy into any object (living or nonliving) on the Globe. The object(s) receive the energy and respond into useful way, this process is termed as biofield treatment. Mr. Trivedi’s unique biofield energy treatment is also known as The Trivedi Effect®. Recently, the biofield treatment is evaluated in several field like material science [5-8], agricultural science [15, 16], biotechnology [17], and microbiology [18-20]. Conceiving the impact of biofield treatment on various living and nonliving things, the study aimed to evaluate the impact of biofield treatment on physicochemical and spectroscopic properties of TPP using various analytical techniques.

Perspectives

In conclusion, the XRD diffractogram of biofield treated TPP showed the alteration in intensity of XRD peaks and decreased crystallite size (6.13%) as compared to control. The thermal analysis (DSC, TGA/DTG) showed a slight increase in melting temperature and Tmax. However, the latent heat of fusion was significantly increased (66.34%) in treated sample as compared to control. The spectroscopic analysis (FT-IR and UV-Vis) showed that biofield treatment did not affect the structural properties of treated sample as compared to control. Based on XRD, DSC, TGA/DTG analysis, it is concluded that biofield treatment has the impact on physicochemical characteristics of treated TPP with respect to control. The increase in latent heat of fusion, reduction in % weight loss, and increase in Tmax of treated TPP suggests the increase in thermal stability as compared to control, which could be beneficial for it application in thermal safety of lithium-ion batteries.

Mr Mahendra Kumar Trivedi
Trivedi Global Inc.

Read the Original

This page is a summary of: Physicochemical and Spectroscopic Characterization of Biofield Treated Triphenyl Phosphate, American Journal of Applied Chemistry, January 2015, Science Publishing Group,
DOI: 10.11648/j.ajac.20150305.13.
You can read the full text:

Read

Resources

Contributors

The following have contributed to this page