What is it about?

This study aimed to develop accurate models for estimating the compressive strength (CS) of concrete using a combination of experimental testing and different machine learning (ML) approaches: baseline regression models, boosting model, bagging model, tree-based ensemble models, and average voting regression (VR). The research utilized an extensive experimental dataset with 14 input variables, including cement, limestone powder, fly ash, granulated glass blast furnace slag, silica fume, rice husk ash, marble powder, brick powder, coarse aggregate, fine aggregate, recycled coarse aggregate, water, superplasticizer, and voids in mineral aggregate. To evaluate the performance of each ML model, five metrics were used: mean absolute error (MAE), mean squared error (MSE), root mean squared error (RMSE), coefficient of determination (R2-score), and relative root mean squared error (RRMSE). The comparative analysis revealed that the VR model exhibited the highest effectiveness, displaying a strong correlation between actual and estimated outcomes. The boosting, bagging, and VR models achieved impressive R2-scores in the range of 86.69%–92.43%, with MAE ranging from 3.87 to 4.87, MSE from 21.74 to 38.37, RMSE from 4.66 to 4.87, and RRMSE between 8% and 11%. Particularly, the VR model outperformed all other models with the highest R2-score (92.43%) and the lowest error rate. The developed models demonstrated excellent generalization and prediction capabilities, providing valuable tools for practitioners, researchers, and designers to efficiently evaluate the CS of concrete. By mitigating environmental vulnerabilities and associated impacts, this research can significantly contribute to enhancing the quality and sustainability of concrete construction practices.

Featured Image

Why is it important?

Machine learning (ML) has emerged as a transformative tool in civil engineering [1–3], offering promising avenues for advancing prediction and analysis within diverse domains. Its integration into civil engineering practices holds the potential to augment predictability and cost-effectiveness by reducing the dependence on resource-intensive real-time experimentation. A significant application of ML in civil engineering is the prediction of compressive strength (CS) in concrete.

Perspectives

The future scope of our work extends to exploring advanced ML techniques, with a specific focus on integrating deep learning models. By doing so, we aim to overcome the dataset size limitation and further refine the accuracy of concrete strength predictions. This forward-looking initiative will involve a dedicated commitment to collecting comprehensive datasets that encompass a wider range of concrete compositions, addressing challenges related to sparsity and noise, and ensuring a more representative sample for robust model development.

Dr Gobinath R
SR University, Warangal

Read the Original

This page is a summary of: Machine Learning Modeling Integrating Experimental Analysis for Predicting Compressive Strength of Concrete Containing Different Industrial Byproducts, Advances in Civil Engineering, March 2024, Hindawi Publishing Corporation,
DOI: 10.1155/2024/7844854.
You can read the full text:

Read
Open access logo

Contributors

The following have contributed to this page