What is it about?
Team formation is concerned with the identification of a group of experts who have a high likelihood of effectively collaborating with each other in order to satisfy a collection of input skills. Solutions to this task have mainly adopted graph operations and at least have the following limitations: (1) they are computationally demanding as they require finding shortest paths on large collaboration networks; (2) they use various types of heuristics to reduce the exploration space over the collaboration network in order to become practically feasible; therefore, their results are not necessarily optimal; and, (3) they are not well-suited for collaboration network structures given the sparsity of these networks. Our work proposes a variational Bayesian neural network architecture that learns representations for teams whose members have collaborated with each other in the past. The learnt representations allow our proposed approach to mine teams that have a past collaborative history and collectively cover the requested desirable set of skills. Through our experiments, we demonstrate that our approach shows stronger performance compared to a range of strong team formation techniques from both quantitative and qualitative perspectives.
Featured Image
Read the Original
This page is a summary of: A Variational Neural Architecture for Skill-based Team Formation, ACM Transactions on Information Systems, April 2023, ACM (Association for Computing Machinery),
DOI: 10.1145/3589762.
You can read the full text:
Contributors
The following have contributed to this page