Featured Image
Why is it important?
Continuous structural health monitoring (SHM) and delayed SHM techniques can be contact/ contactless, surface bonded/embedded, wired/wireless and active/passive actuator-sensor systems which transfer the recorded condition of the structure to the base station almost instantaneously or with time delay respectively. The time between fatal crack initiation and its propagation leading to the collapse of key infrastructures such as aerospace, nuclear facilities, oil and gas is mostly short. Timely discovery of structural problem depends heavily on the scanning period in well-established techniques like piezoelectric (PZT) based electromechanical impedance (EMI) technique. This often takes much scanning time due to the acquisition of resonant structural peaks at all frequencies in the considered bandwidth; thus poses a challenge for its implementation in practice. On the other hand, recently developed strain sensors based on metamaterials and their breeds such as nested split-ring resonators, localized surface plasmons (LSP), etc, employ measurement of reflected or transmitted signal, with super-fast scanning in the order of at most 1/100th of the time taken by the EMI technique. This paper articulates faster measurements by reducing unnecessary resonant structural peaks and focusing on rapid monitoring using PZT and metamaterial plasmons. Our research adopted wired PZT and wireless LSP communications with impedance analyser and vector network analyser respectively. We present integrated and complementary nature of these techniques, which can be processed rapidly for key infrastructures with great effectiveness. This integration can result in both continuous and delayed SHM techniques based on time or frequency or both domains.
Read the Original
This page is a summary of: Evaluation of peak-free electromechanical piezo-impedance and electromagnetic contact sensing using metamaterial surface plasmons for load monitoring, Smart Materials and Structures, November 2016, Institute of Physics Publishing,
DOI: 10.1088/0964-1726/26/1/015003.
You can read the full text:
Contributors
The following have contributed to this page