What is it about?
In this study, CNF/polyol dispersions with a good distribution of CNF in polyol at loadings from 0.03% to 1.12% w/w were used to prepare the CNF/RPUF nanocomposites (CNF/RPUF) containing 0.01% to 0.40% w/w CNF loading. This series of true RPUF nanocomposites represents a better platform to investigate the effect of the CNF on the microstructure, thermal and mechanical properties of RPUF.
Featured Image
Photo by Ravi Patel on Unsplash
Why is it important?
Polyols are widely used as precursors, compatibilisers, and viscosity modifiers in the polymer, food, and paint industries, and their rheological properties are critical for engineering the optimal performance of final products and enabling new and diverse applications. Cellulose nanofibres (CNF) with hydroxyl functional groups are among the most attractive types of functional additive candidates being explored to improve the mechanical and thermal insulation performance of rigid polyurethane foams (RPUF). However, in practice, the poor dispersion of CNF in polyols has hindered the potential enhancements to RPUF using this approach. An efficient control over the microstructure and physical properties of polyurethane foam is demonstrated through dispersion engineering of cellulose nanofibre, a biosourced nanoadditive, in polyols with a broad range of rheological characteristics.
Perspectives
Read the Original
This page is a summary of: Dispersion engineering of cellulose nanofibres in polyols: for controlled microstructure of high-performance polyurethane foam, Materials Advances, January 2024, Royal Society of Chemistry,
DOI: 10.1039/d3ma00865g.
You can read the full text:
Resources
Contributors
The following have contributed to this page