What is it about?

The objective of this examination was to explore the impact of gestational caffeine (1,3,7-trimethylxanthine) exposure on the maternofetal thyroid axis and fetal thyroid–cytokine communications during gestation. Pregnant rats (Rattus norvegicus) were intraperitoneally administered caffeine (120 or 150 mg kg-1) from gestation day (GD) 1 to 20. Both doses of caffeine resulted in maternal hyperthyroidism, whereas the elevation in the concentration of serum free triiodothyronine (FT3) and free thyroxine (FT4) was related to a depletion in the level of TSH at GD 20. Maternal body weight gain and food consumption were markedly increased, while fetal body weight was significantly reduced. These alterations caused fetal hypothyroidism and several pathological lesions in the fetal thyroid gland including a vacuolar colloid, destructive degeneration, atrophy and hyperplasia at embryonic day (ED) 20. The abnormalities in the fetal thyroid gland seemed to depend on the activation of caspase-3, Bcl-2, BAX, Cox2, and NF-κB mRNA expression. Both maternal caffeine doses caused a marked attenuation in the values of fetal serum GH, IGF-II, VEGF, TGF-β, TNF-α, IL-1β, IL-6, leptin and MCP-1, and a noticeable elevation in the value of fetal serum adiponectin at ED 20. Thus, gestational caffeine exposure might disrupt the fetal thyroid– cytokine axis.

Featured Image

Why is it important?

gestational caffeine exposure might disrupt the fetal thyroid–cytokine axis.

Perspectives

gestational caffeine exposure has a cumulative and inhibitory effect on fetal development. These data suggest that women should restrict caffeine intake during pregnancy to avoid any adverse maternofetal effects. Further examination of these data and their potential effect on human health may be required.

Full Professor Ahmed R. G.
Division of Anatomy and Embryology, Zoology department, Faculty of Science, Beni-Suef University, Egypt.

Read the Original

This page is a summary of: Gestational caffeine exposure acts as a fetal thyroid-cytokine disruptor by activating caspase-3/BAX/Bcl-2/Cox2/NF-κB at ED 20, Toxicology Research, January 2019, Oxford University Press (OUP),
DOI: 10.1039/c8tx00227d.
You can read the full text:

Read

Contributors

The following have contributed to this page