What is it about?

The conformational behaviour of a prototype helical molecule, [6]helicene, and its derivatives was studied in solution and the solid state. Available crystal structures of [6]helicene revealed surprisingly large flexibility of this molecule and variable-temperature NMR experiments provided unusual temperature dependence of chemical shifts of hydrogen, carbon and fluorine atoms in the peripheral aromatic rings of [6]helicene and tetrafluoro[6]helicene. These chemical shift changes were interpreted as a consequence of the helicene ‘pitch’ opening with elevated temperature, and the experimental data were corroborated by DFT calculations of the chemical shift dependence on the helicene conformation and by variable-temperature DFT molecular dynamics simulations.

Featured Image

Why is it important?

The conformational behaviour of a prototype helical molecule, [6]helicene, and its derivatives was studied in solution and the solid state. Available crystal structures of [6]helicene revealed surprisingly large flexibility of this molecule and variable-temperature NMR experiments provided unusual temperature dependence of chemical shifts of hydrogen, carbon and fluorine atoms in the peripheral aromatic rings of [6]helicene and tetrafluoro[6]helicene. These chemical shift changes were interpreted as a consequence of the helicene ‘pitch’ opening with elevated temperature, and the experimental data were corroborated by DFT calculations of the chemical shift dependence on the helicene conformation and by variable-temperature DFT molecular dynamics simulations.

Perspectives

The conformational behaviour of a prototype helical molecule, [6]helicene, and its derivatives was studied in solution and the solid state. Available crystal structures of [6]helicene revealed surprisingly large flexibility of this molecule and variable-temperature NMR experiments provided unusual temperature dependence of chemical shifts of hydrogen, carbon and fluorine atoms in the peripheral aromatic rings of [6]helicene and tetrafluoro[6]helicene. These chemical shift changes were interpreted as a consequence of the helicene ‘pitch’ opening with elevated temperature, and the experimental data were corroborated by DFT calculations of the chemical shift dependence on the helicene conformation and by variable-temperature DFT molecular dynamics simulations.

Dr Vladimír Církva
Institute of Chemical Process Fundamentals

Read the Original

This page is a summary of: Internal dynamics in helical molecules studied by X-ray diffraction, NMR spectroscopy and DFT calculations, Physical Chemistry Chemical Physics, January 2017, Royal Society of Chemistry,
DOI: 10.1039/c6cp07552e.
You can read the full text:

Read

Contributors

The following have contributed to this page