What is it about?
How can a snake swallow a mouse bigger than its mouth? Weird as it seems, questions like this emerge very often at the molecular scale. For example, we can fill porous materials with molecules larger than the diameter of the pores: in this way, we may obtain devices for energy and health applications. What makes this useful process possible? Flexibility is the key: both the porous host (the "snake") and the molecule (the "mouse") must deform for the uptake to occur. But here, contrary to the mouse-snake case, cooperation between the two partners is also needed.
Featured Image
Why is it important?
For the first time we captured the slipping of a bulky molecule through a narrow opening. We did this by computer simulations, because it is very hard to get information experimentally. To get a quick idea of what we found, you don't even need to go through the paper; the short movie on the right side menu could be enough. We noticed that the channel opening resembles a funnel: it is larger at the entrance. This surely helps the molecule to go in. Also, we have seen that the molecule is drawn to the entrance by specific intermolecular forces. However, the molecule can pass through the entrance and slip inside the pore only because it's flexible, and its motion is "in tune" with the vibrations of the host matrix. All this factors cope to make the entrance process more favorable than the exit process - that's why the molecule gets finally swallowed by the pore.
Perspectives
Read the Original
This page is a summary of: One-dimensional self-assembly of perylene-diimide dyes by unidirectional transit of zeolite channel openings, Chemical Communications, January 2016, Royal Society of Chemistry,
DOI: 10.1039/c6cc05303c.
You can read the full text:
Resources
The entrance process
This video shows the molecule passing through the zeolite channel opening and penetrating inside the pore
Supplementary material
-Detailed description of the computational procedure adopted in this work. -Further images of the models -A more detailed description of the molecular entrance process.
Blog post
A slightly longer version of this summary, incorporating the video and an image.
alternative link for the video
Same video as above (with the DOI of the paper as a caption).
Full text - Open Access
This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.
Cover Picture
ChemComm inside front cover featuring this work (jpg file)
Poster: "at the entrance of zeolite nanochannels"
Poster presented at the 6th EuCheMS Congress in Seville and at the Oxide2016 Workshop in Naples
Contributors
The following have contributed to this page