What is it about?

Recently, due to the complex nature of cyber-physical distribution networks (DNs) and the severity of power outages caused by natural disasters, microgrid (MG) formation, distributed renewable energy resources (DRERs), and demand response programs (DRP) have been employed to enhance the resiliency of these networks.

Featured Image

Why is it important?

This paper proposes a novel multi-objective MGs formation methodbased darts game theory optimization algorithm. The microgrid formation is obtained by controlling the sectionalizing and tie-line switches. The network graph theory is used to represent the constructed microgrid, and the non-linear equations of power flow and loss calculations are adopted in the microgrid formation model. To measure the system’s resiliency under extreme disaster events, metrics are utilized to prove the system’s flexibility and resiliency. The modified IEEE 33-bus test system is designed to validate the proposed approach’s effectiveness.

Perspectives

Three case studies are performed with and without considering the emergency demand response program (EDRP) and tie-lines.

sahar kaddah
Mansoura University

Read the Original

This page is a summary of: Impact of implementing emergency demand response program and tie-line on cyber-physical distribution network resiliency, Scientific Reports, March 2023, Springer Science + Business Media,
DOI: 10.1038/s41598-023-30746-1.
You can read the full text:

Read

Contributors

The following have contributed to this page