What is it about?

Perovskite solar cells are very promising for practical applications owing to their rapidly rising power conversion efficiency and low cost of solution-based processing. 2,2′,7,7′-Tetrakis(N,N-di-p-methoxyphenylamine) 9,9′-spirobifluorene (Spiro-OMeTAD) is most widely used as a hole-transporting material (HTM) in perovskite solar cells. However, the tedious synthesis and high cost of Spiro-OMeTAD inhibit its commercial-scale application in the photovoltaic industry. In this article, we report a carbazolebased compound (R01) as a new HTM in efficient perovskite solar cells. R01 is synthesized via a facile route consisting of only two steps from inexpensive commercially available materials. Furthermore, R01 exhibits higher hole mobility and conductivity than the state-of-the-art Spiro-OMeTAD. Perovskite solar cells fabricated with R01 produce a power conversion efficiency of 12.03%, comparable to that obtained in devices using Spiro- OMeTAD in this study. Our findings underscore R01 as a highly promising HTM with high performance, and its facile synthesis and low cost may facilitate the large-scale applications of perovskite solar cells.

Featured Image

Read the Original

This page is a summary of: Facile Synthesis and High Performance of a New Carbazole-Based Hole-Transporting Material for Hybrid Perovskite Solar Cells, ACS Photonics, July 2015, American Chemical Society (ACS),
DOI: 10.1021/acsphotonics.5b00283.
You can read the full text:

Read

Contributors

The following have contributed to this page