What is it about?
When studying new materials for electronic applications, we often need to carry out many studies varying different parameters to understand the relationship between properties such as size/shape, material quality, and electronic performance. In this study we report a new methodology - using correlated measurements on a single set of a target material with random variations across it to model the interplay in a holistic way. We use this to create a unified and statistically rigorous understanding of CsPbBr, an exciting nanomaterial in the perovskite family.
Featured Image
Photo by Luke Chesser on Unsplash
Why is it important?
This study developed a methodology to link data with material properties for nanomaterials. We make use of thousands of single point measurements to robustly measure properties such as crystal strain and electronic conduction; this allows us both to provide a rigorous measurement, and to quantify this. This approach is generally applicable across novel optoelectronic materials.
Perspectives
Read the Original
This page is a summary of: Holistic Determination of Optoelectronic Properties using High-Throughput Spectroscopy of Surface-Guided CsPbBr3 Nanowires, ACS Nano, May 2022, American Chemical Society (ACS),
DOI: 10.1021/acsnano.2c01086.
You can read the full text:
Resources
Contributors
The following have contributed to this page