What is it about?
Microorganisms inhabit the Earth in a vast variety of environments. Some of these microorganisms respond to outside stimuli and move in selected directions. These responses are called taxis. Taxis responding to gravity, light, and chemicals are respectively called gravitaxis, phototaxis, and chemotaxis. In suspension, when a certain quantity of microorganisms accumulates near a free surface due to taxis, cells of the microorganisms fall, and thus bioconvection is generated because the cells are denser than water. A high-concentration region of bacteria in bioconvection is called a plume. Bioconvection is a three-dimensional phenomenon, and multiple plumes will exist in a chamber. Under such circumstances, the plumes interfere with each other, and the accompanying change in the wavelength of the bioconvection pattern affects the transport characteristics. From the above viewpoints, we simulate three-dimensional bioconvection generated by oxygen-reactive chemotactic bacteria and then clarify the bioconvection patterns, interference between plumes, the wavelengths of each pattern, and the transport characteristics of cells and oxygen when multiple plumes arise.
Featured Image
Photo by CDC on Unsplash
Why is it important?
Microorganisms have been used for environmental cleanup in various fields. In addition, bioconvection can be applied to driving micromechanical systems, mixing chemicals, detecting toxicity, and controlling microorganisms in biochips, as well as other applications. Furthermore, the production of biofuels by microorganisms has attracted attention from the viewpoint of being clean and environmentally friendly. Therefore, for the efficient utilization of microorganisms in various fields, it is important to determine the behavior of microorganisms and the mass transfer characteristics in bioconvection generated by microorganisms with taxis. In this study, we conducted a three-dimensional numerical simulation on bioconvection generated by oxygen-reactive chemotactic bacteria. The bioconvection patterns, interference between plumes, the wavelength of the bioconvection pattern, and transport characteristics of cells and oxygen were clarified when multiple plumes occurred in the suspension.
Perspectives
Read the Original
This page is a summary of: Pattern wavelengths and transport characteristics in three-dimensional bioconvection generated by chemotactic bacteria, Journal of Fluid Mechanics, November 2022, Cambridge University Press,
DOI: 10.1017/jfm.2022.898.
You can read the full text:
Contributors
The following have contributed to this page