What is it about?

Civil engineering experimentation process is termed to be a costly process when it involves destructive testing of materials to obtain their strength and durability. Testing of materials through destructive process is century old procedure, but recent decade science involves the prediction of strength and durability using alternative methods. One such method to predict the strength in nondestructive method is employment of Soft computing technologies, this process is gaining impetus in the recent decade due to its accuracy, reliability, and versatility. In this research, we had employed artificial intelligence tool to predict the compressive strength of concrete with available real time laboratory-based data. AI tools require a greater number of data to predict the results but in this work and attempt is made to predict using a smaller number of data with more accuracy. Compressive, flexure and tensile strength of concrete is predicted using ANN techniques (Levenberg-Marquardt (L-M) process and Bayesian regularization (B-R)). Two input parameters were only employed to check the real time accuracy with a model that has 12 input layers and 18 hidden layers incorporated. Model output shows regression values of 0.97428, 0.92865 and 0.96772, concerned with L-M algorithmic model and 0.96573, 0.95625 and 0.91787 for B-R based model. Also, its observed that while using L-M algorithm the best performance was obtained at 1.3287 at epoch 2 for compressive strength and 0.12417 is achieved at epoch 1 for tensile strength and 0.021578 at epoch 3 concerned with flexural strength. Also with B-R algorithm provided best performance of 2.1488 at epoch 4 for compressive strength, a value of 0.43468 at epoch 3 for flexural strength and 0.015279 for tensile strength reached at epoch 30. Thus we propose the usage of ANN even with less number of data using this method for predicting the values of compressive strength of concrete.

Featured Image

Why is it important?

This tremendous growth in the industry had put lot of pressure on the resource utilization pattern that is used for construction. Concrete is the most widely used construction material which had undergone large amount of change in the ingredients used, method of preparation and also the admixtures employed to customize the concrete strength and durability. Researchers had studied the impact of using many materials including waste materials as concrete ingredients and admixtures (conventional and non-conventional). Bountiful research works clearly conveyed that properly utilizing the waste materials is need of the hour and concrete provides a solution for the same [1], [2], [3], [4]. This also avoid overloading the landfills which are normally used to dump those waste materials and reduce the cost of construction of landfills too. Also, recent research works had proved that this materials can be utilized either partially or fully replacing binder (cement) or fillers (aggregates) in any proportions, many materials were tried by several researchers that are proved to be viable supplementary materials.

Perspectives

Artificial intelligence techniques were employed by several researchers, in this we had used Levenberg-Marquardt and Bayesian regularization algorithms.

Dr Gobinath R
SR University, Warangal

Read the Original

This page is a summary of: Strength characterisation of self cured concrete using AI tools, Materials Today Proceedings, January 2021, Elsevier,
DOI: 10.1016/j.matpr.2020.10.101.
You can read the full text:

Read

Contributors

The following have contributed to this page