What is it about?
In this work we develop a theoretical analysis for the mass transfer of an electroneutral solute in a concentric-annulus microchannel driven by an oscillatory electroosmotic flow (OEOF) of a fluid whose behavior follows the Maxwell model. The annular microchannel connects two reservoirs that have different concentrations of the solute. For the mathematical modeling of the OEOF, we assume the Debye-Hückel approximation and that the wall zeta potentials of the micro-annulus can be symmetric or asymmetric. The governing equations are nondimensionalized, from which the following dimensionless parameters appear: an angular Reynolds number, the ratio of the wall zeta potentials of the annular microchannel, the electrokinetic parameter, the dimensionless gap between the two cylinders, the Schmidt number and the elasticity number. The results indicate that the velocity and concentration distributions across the annular microchannel become non-uniform as the angular Reynolds number increases, and depend notably on the elasticity number. It is also revealed that with a suitable combination of values of the elasticity number and gap between the two cylinders, together with the angular Reynolds number, the total mass transport rate can be increased and the species separation can be controlled.
Featured Image
Read the Original
This page is a summary of: Mass transfer through a concentric-annulus microchannel driven by an oscillatory electroosmotic flow of a Maxwell fluid, Journal of Non-Newtonian Fluid Mechanics, May 2020, Elsevier,
DOI: 10.1016/j.jnnfm.2020.104281.
You can read the full text:
Contributors
The following have contributed to this page