What is it about?
Phoenix pusilla fibres (PPFs) were extracted from the leaves of a plant belonging to the family of Arecaceae, which is widely grown in Sri Lanka and Southern parts of India for some medicinal purposes. Their use as possible reinforcement in hydrophobic polymeric matrix composites is yet to be studied and for this reason, the better understanding of their microstructure, chemical composition, and mechanical properties becomes essential. In this view, the present investigation deals with the study on the effect of various chemical treatments on the mechanical, chemical structure, thermal and morphological behaviour of PPFs. The chemical treatment of fibres was initially involved with NaOH and then followed by benzoyl peroxide, potassium permanganate and stearic acid solution at different concentrations for the suitable time interval. The results revealed that chemical treatments help in diminishing the amorphous content from the fibres, while the FTIR analysis clearly indicates the removal of many polar impurities. The increase in crystallinity index and crystallite size was seen in all the modified fibres when compared with the raw ones. The improved thermal stability behaviour in all the chemically treated fibres was demonstrated by thermogravimetric and differential scanning calorimetry analysis. The tensile properties of the fibres were analyzed through ASTM standard and finally, the surface morphology was analyzed using scanning electron microscopy. All the favourable results indicated that the PPFs could be used in the applications of natural fibre composites.
Featured Image
Why is it important?
We have characterized PPF fibers for composite applications
Perspectives
Read the Original
This page is a summary of: Characterization of cellulosic fibre from Phoenix pusilla leaves as potential reinforcement for polymeric composites, Journal of Materials Research and Technology, May 2019, Elsevier,
DOI: 10.1016/j.jmrt.2019.03.006.
You can read the full text:
Contributors
The following have contributed to this page