What is it about?
This study aims to examine the effect of zeolites in optimizing the process of food waste composting. A novel method of sequential hydrothermal was introduced to modify the natural zeolite and apply to in-vessel compost bioreactors. Raw and modified natural zeolites were applied at 10 and 15% (w/w) of the total waste and compared with un-amended control trial. Both raw and modified zeolites affected the composting process, but the notable results were observed for modified natural zeolite. The results for compost stability parameters were prominent at 15% modified natural zeolite concentration. The rapid and long-term thermophillic temperature and moisture content reduction to the optimum range was observed for modified natural zeolite. Furthermore, the total ammonium (NH4+) and nitrate (NO3−) concentration in modified natural zeolite were increased by 11.1 and 21.5% respectively as compared to raw zeolite. Compost stability against moisture contents (MC), electrical conductivity (EC), organic matters (OM), total carbon (TC), mineral nitrogen, nitrification index (NI) and germination index (GI) was achieved after 60 days of composting that was in accordance with the international compost quality standards. The findings of this study suggested the suitability of modified natural zeolite addition at 15% to the total waste as the optimum ratio for the composting of food waste in order to achieve a stable nutrient-rich compost.
Featured Image
Read the Original
This page is a summary of: Untapped potential of zeolites in optimization of food waste composting, Journal of Environmental Management, July 2019, Elsevier,
DOI: 10.1016/j.jenvman.2019.04.014.
You can read the full text:
Contributors
The following have contributed to this page