What is it about?

Excessive concentrations of free radicals in the developing brain may lead to neurons maldevelopment and neurons damage and death. Thyroid hormones (THs) states play an important role in affecting the modulation of oxidative stress and antioxidant defense system. Thus, the objective of this study was to clarify the effect of hypothyroidism and hyperthyroidism in rat dams on the neurons development of different brain regions of their offspring at several postnatal weeks in relation to changes in the oxidative stress and antioxidant defense system. The adult female rats were administered methimazole (MMI) in drinking water (0.02% w/v) from gestation day 1 to lactation day 21 to induce hypothyroidism and exogenous thyroxine (T4) in drinking water (0.002% w/v) beside intragastric incubation of 50––200 T4 g/kg body weight (b. wt.) to induce hyperthyroidism. In normal female rats, the sera total thyroxine (TT4) and total triiodothyronine (TT3) levels were detectably increased at day 10 post-partum than those at day 10 of pregnancy. Free thyroxine (FT4), free triiodothyronine (FT3), thyrotropin (TSH) and growth hormone (GH) concentrations in normal offspring were elevated at first, second and third postnatal weeks in an age-dependent manner. In hypothyroid group, a marked depression was observed in sera of dam TT3 and TT4 as well as offspring FT3, FT4 and GH, while there was a significant increase in TSH level with the age progress. The reverse pattern to latter state was recorded in hyperthyroid group. Concomitantly, in control offspring, the rate of neuron development in both cerebellar and cerebral cortex was increased in its density and complexity with age progress. This development may depend, largely, on THs state. Both maternal hypothyroidism and hyperthyroidism caused severe growth retardation in neurons of these regions of their offspring from the first to third weeks. Additionally, in normal offspring, seven antioxidant enzymes, four non-enzymatic antioxidants and one oxidative stress marker (lipid peroxidation, LPO) followed a synchronized course of alterations in cerebrum, cerebellum and medulla oblongata. In both thyroid states, the oxidative damage has been demonstrated by the increased LPO and inhibition of enzymatic and non-enzymatic antioxidants in most examined ages and brain regions. These disturbances in the antioxidant defense system led to deterioration in the neuronal maturation and development. In conclusion, it can be suggested that the maldevelopment of neurons and dendrites in different brain regions of offspring of hypothyroid and hyperthyroid mother rat dams may be attributed, at least in part, to the excess oxidative stress and deteriorated antioxidant defense system in such conditions.

Featured Image

Why is it important?

THs, in normal state, play a crucial role in the development and physiological functioning of the CNS. The MMI-induced hypothyroidism and exogenous T4-induced hyperthyroidism may cause a number of injurious anomalies in the development including degeneration, damage, disorganization and deformation of neurons and dendrites. These deteriorations may be attributed, at least in part, to the increased oxidative stress and impaired anti-oxidant defense system in both thyroid states.

Perspectives

Thyroid hormone-induced oxidative stress in rodents and humans: a comparative view and relation to redox regulation of gene expression.

Full Professor Ahmed R. G.
Division of Anatomy and Embryology, Zoology department, Faculty of Science, Beni-Suef University, Egypt.

Read the Original

This page is a summary of: Effects of experimentally induced maternal hypothyroidism and hyperthyroidism on the development of rat offspring: II—The developmental pattern of neurons in relation to oxidative stress and antioxidant defense system, International Journal of Developmental Neuroscience, June 2012, Wiley,
DOI: 10.1016/j.ijdevneu.2012.04.005.
You can read the full text:

Read

Resources

Contributors

The following have contributed to this page