What is it about?
Selection of a material that serves multiple purposes is always beneficial for any electronic device including solar cells. This study investigates nickel oxide (NiO) as a multipurpose material to overcome the potential issues observed in traditional solar cells. A proof-of concept device is fabricated to understand the efficient hole transport from NiO while blocking electrons as determined by I-V measurements showing suppression of dark current and enhancement in the power conversion from the solar cell. Enhanced surface defects in the silicon nanowires (SiNWs) leading to the poor carrier collection is possible to be improved by the selection of wide bandgap metal-oxides that show high band offset for one carrier (electron/hole) while negligible band offset for another carrier (hole/electron) is discussed. Furthermore, Fermi level de-pinning for NiO sandwiched between different metal electrodes and SiNWs, signifying that the selection of appropriate metal electrodes is another key factor in improving the efficiency of solar cells; which is experimentally studied in this work. As fabricated solar cells in this work do not use high temperature diffused PN junction to separate the charge carriers neither toxic gases for doping SiNWs.
Featured Image
Photo by Angie Warren on Unsplash
Why is it important?
This study investigates nickel oxide as a multipurpose material to overcome the potential issues observed in traditional PV. Nickel oxide as a holes transport and electrons blocking material is studied in photovoltaic solar cells. Bi-doped silicon nanowires were grown – such doping can play a crucial role in improving the efficiency of PV.
Read the Original
This page is a summary of: Carrier selective metal-oxides for self-doped silicon nanowire solar cells, Applied Surface Science, October 2019, Elsevier,
DOI: 10.1016/j.apsusc.2019.06.286.
You can read the full text:
Contributors
The following have contributed to this page