What is it about?

This paper reports a safe, simple, green, nontoxic, and environment-friendly approach for the synthesis of silver nanoparticles (AgNPs) using aqueous leaf extract of Trigonella foenum-graecum at room temperature. The aqueous leaf extract was capable to act as a reducing, capping, and stabilizing agent. UV-visible spectroscopic, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscope (SEM), and transmission electron microscopy (TEM) techniques were used to characterize the synthesized AgNPs. The synthesized AgNPs were found to be stable, face-centered cubic, crystalline, and spherical and in the range of 20–25 nm. The antimicrobial activities of the synthesized AgNPs were investigated against plant pathogenic fungi Alternaria alternata and plant pathogenic bacteria Pseudomonas syringae. The assay results showed that A. alternata and P. syringae were inhibited at the 100 ppm of AgNPs in the respective medium. Antifungal assay shows the disruption of fungal mycelium at various places. Similarly, antibacterial assay shows the inhibition zones. These results confirmed that this protocol is a green, environment-friendly, and nontoxic method for the synthesis of AgNPs. Assay results confirmed that the synthesized AgNPs can be used as an effective growth inhibitor for various pathogenic microorganisms and applicable to control microbial systems.

Featured Image

Why is it important?

This paper reports a safe, simple, green, nontoxic, and environment-friendly approach for the synthesis of silver nanoparticles (AgNPs) using aqueous leaf extract of Trigonella foenum-graecum at room temperature. The aqueous leaf extract was capable to act as a reducing, capping, and stabilizing agent. UV-visible spectroscopic, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscope (SEM), and transmission electron microscopy (TEM) techniques were used to characterize the synthesized AgNPs. The synthesized AgNPs were found to be stable, face-centered cubic, crystalline, and spherical and in the range of 20–25 nm. The antimicrobial activities of the synthesized AgNPs were investigated against plant pathogenic fungi Alternaria alternata and plant pathogenic bacteria Pseudomonas syringae. The assay results showed that A. alternata and P. syringae were inhibited at the 100 ppm of AgNPs in the respective medium. Antifungal assay shows the disruption of fungal mycelium at various places. Similarly, antibacterial assay shows the inhibition zones. These results confirmed that this protocol is a green, environment-friendly, and nontoxic method for the synthesis of AgNPs. Assay results confirmed that the synthesized AgNPs can be used as an effective growth inhibitor for various pathogenic microorganisms and applicable to control microbial systems.

Perspectives

This paper reports a safe, simple, green, nontoxic, and environment-friendly approach for the synthesis of silver nanoparticles (AgNPs) using aqueous leaf extract of Trigonella foenum-graecum at room temperature. The aqueous leaf extract was capable to act as a reducing, capping, and stabilizing agent. UV-visible spectroscopic, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscope (SEM), and transmission electron microscopy (TEM) techniques were used to characterize the synthesized AgNPs. The synthesized AgNPs were found to be stable, face-centered cubic, crystalline, and spherical and in the range of 20–25 nm. The antimicrobial activities of the synthesized AgNPs were investigated against plant pathogenic fungi Alternaria alternata and plant pathogenic bacteria Pseudomonas syringae. The assay results showed that A. alternata and P. syringae were inhibited at the 100 ppm of AgNPs in the respective medium. Antifungal assay shows the disruption of fungal mycelium at various places. Similarly, antibacterial assay shows the inhibition zones. These results confirmed that this protocol is a green, environment-friendly, and nontoxic method for the synthesis of AgNPs. Assay results confirmed that the synthesized AgNPs can be used as an effective growth inhibitor for various pathogenic microorganisms and applicable to control microbial systems.

Professor Mohammad Mansoob Khan
Universiti Brunei Darussalam

Read the Original

This page is a summary of: Antifungal and Antibacterial Assay by Silver Nanoparticles Synthesized from Aqueous Leaf Extract of Trigonella foenum-graecum, BioNanoScience, May 2019, Springer Science + Business Media,
DOI: 10.1007/s12668-019-00643-x.
You can read the full text:

Read

Resources

Contributors

The following have contributed to this page