What is it about?

Pathogenic microbes are a major concern in hospitals and other healthcare facilities because they affect the proper performance of medical devices, surgical devices, etc. Due to the antimicrobial resistance or multidrug resistance, combatting these microbial infections has grown to be a significant research area in science and medicine as well as a critical health concern. Antibiotic resistance is where microbes acquire and innately exhibit resistance to antimicrobial agents. Therefore, the development of materials with promising antimicrobial strategy is a necessity. Amongst other available antimicrobial agents, metal oxide and chalcogenide-based materials have shown to be promising antimicrobial agents due to their inherent antimicrobial activity as well as their ability to kill and inhibit the growth of microbes effectively. Moreover, other features including the superior efficacy, low toxicity, tunable structure, and band gap energy has makes metal oxides (i.e. TiO2, ZnO, SnO2 and CeO2 in particular) and chalcogenides (Ag2S, MoS2, and CuS) promising candidates for antimicrobial applications as illustrated by examples discussed in this review.

Featured Image

Why is it important?

Pathogenic microbes are a major concern in hospitals and other healthcare facilities because they affect the proper performance of medical devices, surgical devices, etc. Due to the antimicrobial resistance or multidrug resistance, combatting these microbial infections has grown to be a significant research area in science and medicine as well as a critical health concern. Antibiotic resistance is where microbes acquire and innately exhibit resistance to antimicrobial agents. Therefore, the development of materials with promising antimicrobial strategy is a necessity. Amongst other available antimicrobial agents, metal oxide and chalcogenide-based materials have shown to be promising antimicrobial agents due to their inherent antimicrobial activity as well as their ability to kill and inhibit the growth of microbes effectively. Moreover, other features including the superior efficacy, low toxicity, tunable structure, and band gap energy has makes metal oxides (i.e. TiO2, ZnO, SnO2 and CeO2 in particular) and chalcogenides (Ag2S, MoS2, and CuS) promising candidates for antimicrobial applications as illustrated by examples discussed in this review.

Perspectives

The development of materials with promising antimicrobial strategy is a necessity. Amongst other available antimicrobial agents, metal oxide and chalcogenide-based materials have shown to be promising antimicrobial agents due to their inherent antimicrobial activity as well as their ability to kill and inhibit the growth of microbes effectively. Moreover, other features including the superior efficacy, low toxicity, tunable structure, and band gap energy has makes metal oxides (i.e. TiO2, ZnO, SnO2 and CeO2 in particular) and chalcogenides (Ag2S, MoS2, and CuS) promising candidates for antimicrobial applications as illustrated by examples discussed in this review.

Professor Mohammad Mansoob Khan
Universiti Brunei Darussalam

Read the Original

This page is a summary of: Recent development of metal oxides and chalcogenides as antimicrobial agents, Bioprocess and Biosystems Engineering, May 2023, Springer Science + Business Media,
DOI: 10.1007/s00449-023-02878-1.
You can read the full text:

Read

Resources

Contributors

The following have contributed to this page