What is it about?
中国科学技术大学的俞书宏教授(通讯作者)在Advanced Materials上发表了一篇题为 “Superelastic Hard Carbon Nanofber Aerogels”的文章。研究人员受大自然的启发,通过使用间苯二酚 - 甲醛(RF)树脂作为硬碳源,制备了具有纳米纤维网状结构的超弹性和抗疲劳性的硬碳气凝胶(HCA)。在该方法中,多种一维(1D)纳米纤维,包括细菌纤维素纳米纤维(BCNF),碲纳米线(TeNW)和碳纳米管(CNT),被用作结构模板来制备RF的纳米纤维气凝胶。得益于纳米纤维网状结构和硬碳焊接点,所得HCAs具有优异的机械性能和结构稳定性,如:超弹性、高抗压强度、高回弹速度和低能耗。值得注意的是,HCA的回弹速度(860 mm s-1)比之前报道的层状石墨烯气凝胶的最快回弹速度快50%,压缩强度比层状石墨烯气凝胶高出近6倍。这种新型HCA实现了弹性和强度之间的平衡,可用作宽量程的压阻式传感器,以及可拉伸和可弯曲的传感器。
Featured Image
Photo by Logan Voss on Unsplash
Why is it important?
基于石墨碳和软碳的超弹性碳气凝胶已得到广泛研究,这些柔软的气凝胶通常具有精细的微观结构,良好的抗疲劳性,但是强度通常很低。由于大量sp-C引起的硬碳微观上乱层“纸牌屋”结构的存在,硬碳气凝胶在机械强度和结构稳定性方面展现出极大的优势。然而,制备超弹性硬碳基气凝胶仍然是一个挑战。本文通过合理的纳米纤维网络结构设计,使传统的刚性酚醛树脂转化为超弹性硬碳气凝胶。硬碳纳米纤维和纤维间丰富的焊接点赋予硬碳气凝胶强大而稳定的机械性能,包括超弹性、高强度、高回弹速度(860 mm s-1)、低能量损耗系数(<0.16)、长循环寿命和耐热/耐寒性。该硬碳纳米纤维气凝胶有望应用于高稳定性、大量程(50 kPa)、以及可拉伸或可弯曲的压阻式应力传感器 “软碳”和“硬碳”通常用于描述通过热解有机前驱体制备而来的碳材料。在热解过程中,残留的碳原子重构成二维石墨烯片层结构,如果这些微观石墨烯片层以大致平行的方式排列,那么石墨烯片层就很容易在高温下重新排列成石墨层状结构,也即石墨化,因而该碳就被称为“软碳”或“可石墨化碳”。然而,如果这些微观石墨烯片层随机堆叠并且通过边缘的碳原子形成高度交联,那么其在高温下无法发生石墨化转变,该碳则被称为“硬碳”或“非石墨化碳”。不同的碳组分和结构单元导致其组装体(如气凝胶)之间存在巨大的性能差异。
Perspectives
以1D纳米材料作为模板,通过简单的水热反应得到酚醛树脂纳米纤维气凝胶,接着通过碳化该气凝胶则可得到稳固的硬碳基纳米纤维气凝胶。在以BCNF,TeNW和CNT作为结构模板时,可以通过简单地改变原料的量来控制物理性质(例如纳米纤维的直径,气凝胶的密度和机械性质)。得益于硬碳纳米纤维和纤维之间大量的焊接点,硬碳气凝胶显示出优异而稳定的机械性能,包括超弹性、高强度、极高回弹速度(860 mm s-1)和低能量损耗系数(< 0.16)。在50%应变下测试104个循环后,碳气凝胶仅显示2%的塑性变形,并保持93%的初始应力。硬碳气凝胶可以在苛刻的条件下(例如在液氮中)保持超弹性。基于其优异的机械性能,这种硬碳气凝胶有望在应用于具有高稳定性、大量程(50 kPa)、以及可拉伸或可弯曲的应力传感器。该方法有望扩展到制备其他非碳基复合纳米纤维,并提供了一种通过设计纳米纤维的微观结构将刚性材料转变成弹性或柔性材料的新方法。
Research Associate Zhi-Yuan Ma (马致远)
Yongjiang Laboratory
Read the Original
This page is a summary of: Superelastic Hard Carbon Nanofiber Aerogels, Advanced Materials, April 2019, Wiley,
DOI: 10.1002/adma.201900651.
You can read the full text:
Resources
USTC Develops Superelastic Hard Carbon Aerogels with Nanofibrous Nanostructures : USTC – Office of International Cooperation
Inspired by the flexibility and rigidity of natural spider silks webs, a research team led by Prof. YU Shuhong from the University of Science and Technology of China (USTC) developed a simple and general method to fabricate superelastic and fatigue resistant hard carbon aerogels with nanofibrous network structure by using resorcinol-formaldehyde resin as a hard carbon source. This work is published on Advanced Materials entitled as “Superelastic hard carbon nanofiber aerogels” on April 15th as a back cover (Advanced Materials 2019, 1900651).
中科大Adv. Mater.:超弹性硬碳纳米纤维气凝胶 – 材料牛
基于石墨碳和软碳的超弹性碳气凝胶已得到广泛研究,这些柔软的气凝胶通常具有精细的微观结构,良好的抗疲劳性,但是强度通常很低。由于大量sp3-C引起的硬碳微观上乱层“纸牌屋”结构的存在,硬碳气凝胶在机械强度和结构稳定性方面展现出极大的优势。然而,制备超弹性硬碳基气凝胶仍然是一个挑战。本文通过合理的纳米纤维网络结构设计,使传统的刚性酚醛树脂转化为超弹性硬碳气凝胶。硬碳纳米纤维和纤维间丰富的焊接点赋予硬碳气凝胶强大而稳定的机械性能,包括超弹性、高强度、高回弹速度(860 mm s-1)、低能量损耗系数(<0.16)、长循环寿命和耐热/耐寒性。该硬碳纳米纤维气凝胶有望应用于高稳定性、大量程(50 kPa)、以及可拉伸或可弯曲的压阻式应力传感器。
中国科大研制超弹性硬碳气凝胶-中国科大新闻网
碳材料可按碳原子杂化轨道的不同大致可分为石墨碳、软碳和硬碳。软碳和硬碳主要用于描述聚合物热解制备的碳材料,在热解过程中,一些碳原子重构成二维芳族石墨烯片,如果这些石墨烯片大致平行,在高温下则容易石墨化,这种碳被称为软碳;如果这些石墨烯片随机堆叠并通过边缘碳原子交联,高温下不能石墨化,这种碳则称为硬碳。通常来说,石墨碳和软碳具有高弹性,容易变形,但是强度较低;由于大量sp3-C引起的硬碳微观上乱层“纸牌屋”结构的存在,硬碳材料在机械强度和结构稳定性方面展现出极大的优势,但是本征性质较脆且易碎。如何将硬碳材料制备成超弹性块材是目前面临的一个挑战。
我国科学家研制出超弹性抗疲劳碳纳米纤维气凝胶——【学术桥】
科技日报合肥12月23日电 (记者吴长锋)记者从中国科学技术大学获悉,该校俞书宏院士研究团队与梁海伟教授课题组合作,通过热解化学控制,将结构生物材料热转化为石墨碳纳米纤维气凝胶,其完美地继承了细菌纤维素从宏观到微观的层次结构,具有显著的热机械性能,并实现了大规模合成。相关成果日前发表于《先进材料》上。
硬碳气凝胶的制备-供应KGM/GO/ZIF‑67三元复合/琼脂-纳米SiO2气凝胶定制 - 哔哩哔哩
受自然界蜘蛛网同时具有高强度和弹性的启发,巧妙通过模板法构筑纳米纤维网络结构,制备了一系列具有纳米纤维网络结构的硬碳气凝胶。该系列气凝胶具有超弹性、抗疲劳以及稳定性好等优点。
Contributors
The following have contributed to this page







