All Stories

  1. From turbine-scale to wind farm-scale wake recovery: Understanding the transition
  2. Under-resolved gradients: slow wake recovery and fast turbulence decay with mesoscale Wind Farm Parameterizations
  3. Mean turbulent momentum fluxes and wind deficits in nocturnal stable atmospheric boundary layers
  4. Evolution and instability of the tip vortices behind a yawed wind turbine
  5. Three-dimensional effects of the wake on wind turbine sound propagation using parabolic equation
  6. Impact of atmospheric turbulence on performance and loads of wind turbines: Knowledge gaps and research challenges
  7. Capturing tip-corrected blade element momentum loading with wind turbine models
  8. Scaling relations for heat and momentum transport in sheared Rayleigh–Bénard convection
  9. How wide must Rayleigh–Bénard cells be to prevent finite aspect ratio effects in turbulent flow?
  10. The global properties of nocturnal stable atmospheric boundary layers
  11. Simulation and modeling of wind farms in baroclinic atmospheric boundary layers
  12. Impact of a two-dimensional steep hill on wind turbine noise propagation
  13. Geostrophic Drag Law in Conventionally Neutral Atmospheric Boundary Layer: Simplified Parametrization and Numerical Validation
  14. Effect of airflow rate on CO2 concentration in downflow indoor ventilation
  15. Velocity correction for the Actuator Line Method
  16. Impact of a Two-Dimensional Steep Hill on Wind Turbine Noise Propagation
  17. Toward Understanding Polar Heat Transport Enhancement in Subglacial Oceans on Icy Moons
  18. Investigating the Impact of Atmospheric Boundary Layer Stratification on Wind Farm Noise Propagation
  19. Wind turbine sound propagation: Comparison of a linearized Euler equations model with parabolic equation methods
  20. Optimal heat transport in rotating Rayleigh-Bénard convection at large Rayleigh numbers
  21. Towards understanding polar heat transport enhancement in sub-glacial oceans on icy moons
  22. The Mean Wind and Potential Temperature Flux Profiles in Convective Boundary Layers
  23. Understanding wind farm power densities
  24. Polar heat transport enhancement in sub-glacial oceans on icy moons
  25. Impact of Negative Geostrophic Wind Shear on Wind Farm Performance
  26. Analytical model of fully developed wind farms in conventionally neutral atmospheric boundary layers
  27. Wind farm blockage in a stable atmospheric boundary layer
  28. How small-scale flow structures affect the heat transport in sheared thermal convection
  29. Effect of a 2D Hill on the Propagation of Wind Turbine Noise
  30. Passive scalar transport in Couette flow
  31. Vertical structure of conventionally neutral atmospheric boundary layers
  32. Off-centre gravity induces large-scale flow patterns in spherical Rayleigh–Bénard convection
  33. Investigating wind farm blockage in a neutral boundary layer using large-eddy simulations
  34. A three-dimensional dynamic mode decomposition analysis of wind farm flow aerodynamics
  35. Multiple heat transport maxima in confined-rotating Rayleigh–Bénard convection
  36. Evaluating the accuracy of the actuator line model against blade element momentum theory in uniform inflow
  37. Aspect Ratio Dependence of Heat Transfer in a Cylindrical Rayleigh-Bénard Cell
  38. Strong alignment of prolate ellipsoids in Taylor–Couette flow
  39. Impact of wind farm wakes on flow structures in and around downstream wind farms
  40. Diffusion‐Free Scaling in Rotating Spherical Rayleigh‐Bénard Convection
  41. Effects of atmospheric stability on the performance of a wind turbine located behind a three-dimensional hill
  42. Enhanced wind-farm performance using windbreaks
  43. Heat transport enhancement in confined Rayleigh-Bénard convection feels the shape of the container (a)
  44. Modeling dynamic wind direction changes in large eddy simulations of wind farms
  45. Effect of low-level jet on turbine aerodynamic blade loading using large-eddy simulations
  46. Evaluating wind farm wakes in large eddy simulations and engineering models
  47. Universal Wind Profile for Conventionally Neutral Atmospheric Boundary Layers
  48. The effect of Prandtl number on turbulent sheared thermal convection
  49. Interaction between low-level jets and wind farms in a stable atmospheric boundary layer
  50. Effect of low-level jet height on wind farm performance
  51. Geostrophic drag law for conventionally neutral atmospheric boundary layers revisited
  52. Flow organisation in laterally unconfined Rayleigh–Bénard turbulence
  53. From zonal flow to convection rolls in Rayleigh–Bénard convection with free-slip plates
  54. Calculation of the mean velocity profile for strongly turbulent Taylor–Couette flow at arbitrary radius ratios
  55. Distinct Turbulent Regions in the Wake of a Wind Turbine and Their Inflow-Dependent Locations: The Creation of a Wake Map
  56. Large-Eddy Simulations of Stratified Atmospheric Boundary Layers: Comparison of Different Subgrid Models
  57. Effect of thrust coefficient on the flow blockage effects in closely-spaced spanwise-infinite turbine arrays
  58. Large eddy simulation study of extended wind farms with large inter turbine spacing
  59. Wall modeled immersed boundary method for high Reynolds number flow over complex terrain
  60. Flow organization and heat transfer in turbulent wall sheared thermal convection
  61. Effects of Two-Dimensional Steep Hills on the Performance of Wind Turbines and Wind Farms
  62. From Rayleigh–Bénard convection to porous-media convection: how porosity affects heat transfer and flow structure
  63. What rotation rate maximizes heat transport in rotating Rayleigh-Bénard convection with Prandtl number larger than one?
  64. Direct numerical simulations of spiral Taylor–Couette turbulence
  65. Coherence of temperature and velocity superstructures in turbulent Rayleigh–Bénard flow
  66. Toward DNS of the Ultimate Regime of Rayleigh–Bénard Convection
  67. Zhu et al. Reply:
  68. Effect of sidewall on heat transfer and flow structure in Rayleigh–Bénard convection
  69. Characterizing the Coherent Structures Within and Above Large Wind Farms
  70. Sharp transitions in rotating turbulent convection: Lagrangian acceleration statistics reveal a second critical Rossby number
  71. Effect of Coriolis force on a wind farm wake
  72. Direct numerical simulations of Taylor–Couette turbulence: the effects of sand grain roughness
  73. scaling enabled by multiscale wall roughness in Rayleigh–Bénard turbulence
  74. Large eddy simulations of the effect of vertical staggering in large wind farms
  75. AFiD-GPU: A versatile Navier–Stokes solver for wall-bounded turbulent flows on GPU clusters
  76. Exploring a better turbine layout in vertically staggered wind farms
  77. Transition to the Ultimate Regime in Two-Dimensional Rayleigh-Bénard Convection
  78. Turbulent thermal superstructures in Rayleigh-Bénard convection
  79. Comparison of computational codes for direct numerical simulations of turbulent Rayleigh–Bénard convection
  80. Modeling space-time correlations of velocity fluctuations in wind farms
  81. Comparison of wind farm large eddy simulations using actuator disk and actuator line models with wind tunnel experiments
  82. Roughness-Facilitated Local 1/2 Scaling Does Not Imply the Onset of the Ultimate Regime of Thermal Convection
  83. Confined Rayleigh-Bénard, Rotating Rayleigh-Bénard, and Double Diffusive Convection: A Unifying View on Turbulent Transport Enhancement through Coherent Structure Manipulation
  84. Characterizing the coherent structures in large eddy simulations of aligned windfarms
  85. Flow Structure and Turbulence in Wind Farms
  86. Combining economic and fluid dynamic models to determine the optimal spacing in very large wind farms
  87. Validation of four LES and a vortex model against stereo-PIV measurements in the near wake of an actuator disc and a wind turbine
  88. Generalized coupled wake boundary layer model: applications and comparisons with field and LES data for two wind farms
  89. Wind Farm Large-Eddy Simulations on Very Coarse Grid Resolutions using an Actuator Line Model
  90. Turbulent Rayleigh–Bénard convection described by projected dynamics in phase space
  91. Using the coupled wake boundary layer model to evaluate the effect of turbulence intensity on wind farm performance
  92. Height-dependence of spatio-temporal spectra of wall-bounded turbulence – LES results and model predictions
  93. Dependence of optimal wind turbine spacing on wind farm length
  94. Spatio-temporal spectra in the logarithmic layer of wall turbulence: large-eddy simulations and simple models
  95. Effects of turbine spacing on the power output of extended wind-farms
  96. Coupled wake boundary layer model of wind-farms
  97. Large-eddy simulation study of the logarithmic law for second- and higher-order moments in turbulent wall-bounded flow
  98. A concurrent precursor inflow method for Large Eddy Simulations and applications to finite length wind farms
  99. Temporal structure of aggregate power fluctuations in large-eddy simulations of extended wind-farms
  100. A wavenumber-frequency spectral model for atmospheric boundary layers
  101. Meteorology for Coastal/Offshore Wind Energy in the United States: Recommendations and Research Needs for the Next 10 Years
  102. Large eddy simulation studies of the effects of alignment and wind farm length
  103. Sidewall effects in Rayleigh–Bénard convection
  104. Comparison between two- and three-dimensional Rayleigh–Bénard convection
  105. The unifying theory of scaling in thermal convection: the updated prefactors
  106. Heat transport and flow structure in rotating Rayleigh–Bénard convection
  107. Heat transport in bubbling turbulent convection
  108. Optimal Taylor–Couette flow: direct numerical simulations
  109. Spatial distribution of heat flux and fluctuations in turbulent Rayleigh-Bénard convection
  110. Breakdown of the large-scale circulation in Γ = 1 / 2 rotating Rayleigh-Bénard flow
  111. Logarithmic Temperature Profiles in Turbulent Rayleigh-Bénard Convection
  112. Flow states in two-dimensional Rayleigh-Bénard convection as a function of aspect-ratio and Rayleigh number
  113. Thermal boundary layer profiles in turbulent Rayleigh-Bénard convection in a cylindrical sample
  114. Effect of aspect-ratio on vortex distribution and heat transfer in rotating Rayleigh-Bénard convection
  115. Horizontal structures of velocity and temperature boundary layers in two-dimensional numerical turbulent Rayleigh-Bénard convection
  116. Effect of aspect ratio on vortex distribution and heat transfer in rotating Rayleigh-Bénard convection
  117. Prandtl and Rayleigh number dependence of heat transport in high Rayleigh number thermal convection
  118. The role of Stewartson and Ekman layers in turbulent rotating Rayleigh–Bénard convection
  119. Connecting flow structures and heat flux in turbulent Rayleigh-Bénard convection
  120. Effect of plumes on measuring the large scale circulation in turbulent Rayleigh-Bénard convection
  121. Numerical simulations of rotating Rayleigh-Bénard convection
  122. Finite-Size Effects Lead to Supercritical Bifurcations in Turbulent Rotating Rayleigh-Bénard Convection
  123. Prandtl–Blasius temperature and velocity boundary-layer profiles in turbulent Rayleigh–Bénard convection
  124. Boundary layers in rotating weakly turbulent Rayleigh–Bénard convection
  125. Boundary layer structure in turbulent thermal convection and its consequences for the required numerical resolution
  126. Flow Reversals in Thermally Driven Turbulence
  127. Optimal Prandtl number for heat transfer in rotating Rayleigh–Bénard convection
  128. Radial boundary layer structure and Nusselt number in Rayleigh–Bénard convection
  129. Transitions between Turbulent States in Rotating Rayleigh-Bénard Convection
  130. Prandtl-, Rayleigh-, and Rossby-Number Dependence of Heat Transport in Turbulent Rotating Rayleigh-Bénard Convection
  131. Prandtl-, Rayleigh-, and Rossby-number dependence of heat transport in turbulent Rotating Rayleigh-Bénard convection
  132. Rayleigh-Bénard turbulence